Simulation numerique des modeles de O.A. Ladyzhenskaya par Ia methode des elements finis
Keywords:
Navier-Stockes, Ladyzhenskaya models, variable viscosity, finite element, nonlinear systemAbstract
ABS11lACT. In this paper we study the finite element approximalion of the first and the second models for the motion of incompressible viscous flows proposed by 0 .A. Ladyzhenskaya. The uniqueness result of the weak and discrete formulations associaled with the problem : { roL( (vo + vdroL ui•-l] roLu)- gr;_d ( (v0 + vddivul'-2] divu) + u.'llu + gr;_dp = f in 0 divu = 0 inn u=O ~r are established. Numerical results for these two models on a driven cavity problem are the presented and discussed.
Downloads
References
(DP 771 M. Dercovier and O.A. Pironneau, Error Estimates for Finite Element Method Solution of tl1e
Stokes Problem in the Primitive Variables, Numer. Math. 33,211-224, 1977.
(DG 911 Q. Du and M. Gunzburger,Analysis of a Ladyzl1enskaya Model for Incompressible Viscous Flow, J.
Math. Anal. Appl., 1991.
(DG 90) Q. Du and M. Gunzburger, Finite Element Approximations of a Ladyzhenskaya Model for Stationary
incompressible Viscous Flow, Siam J. Numer. Anal. 27,1990, pp.l-19.
(GGS 821 U. Ghia,K.N. Ghia and C.T. Shin, llight-Re Solutions for Incompressible Flow Using the Navier-
Stokes Equations and a Mulligrid Metbod, Jour. of Comput. Phys. vol 48,1982.
(GR 791 V. GirauU and P.A. Raviarl, Finite Element Approxiamation of Navier-Stokes Equations, Lecture
in Notes in Math. 749, Springer-Verlag, Berlin, 1979.
(Go! 671 K.K. Golovkin, New Equations Modeling the Motion of a Viscous Fluid, and their Unique Solvability,
Proc. Sleklov lnst. Math. voi.I02, 1967.
(Lad1 70) O.A. Ladyzhenskaya, Modification of the Navier Stokes Equations for Large Velocity Gradients, in
Boundary Value Problems of Mathematical Physics and Related Aspects of Function Theory II, Consultants Bureau,
New york, 1970.
(Lad2 701 O.A. Ladyzhenskaya, New Equations for the Description of the Viscous Incompressible Fluids and
Solvability in tl1e Large of the Boundary Value Pro/ems for them, in Boundary Value Problems of Mathematical
Physics V, Amer. Math. Soc., Providence, Rl, 1970.
(Rou 921 D. Le Roux, Simulation numerique des modeles de O.A. Ladyzhenskaya par Ia methode des e/Cments
linis, Universite Laval Quebec, 1992 (memoire de maitrise).
(Tal 80] P. Le Tallec,A Mixed Finite Element Approximation of the Navier-Stokcs Equations, Numer.Math.
, 381-404, 1980.
[Ser 69] J. Serrin, Mathematical Principles of Classical Fluid Mechanics, in Encyclopedia of Physics VIII, pp.125-
, Springer, Berlin, 1959.
[Tern 771 R. Tcmam, Navier-Stokes Equations, North-Holland, Arnslerda.m, 1977.
[Tho 811 F. Thomasscl, Implementation of Finite Element Metl10d for Navier-Sokes Equations, Springer Series
in Computational Physics, Springer-Verlag, Berlin, 1981.