Methodes d'elements finis pour les problemes de convection-diffusion

Authors

  • Jean Donea Division m~canique appliqu~e Centre commun de recherche Commission des communaut~s europ~ennes 1-21020 lspra (Va),ltalie

Keywords:

modelling, finite elements, convection, diffusion, characteristics, PetrovGalerkin, Taylor-Galerkin, least-squares

Abstract

This paper presents a brief overview of generalized Galerkin methods for the finite element solution of transport problems governed by convection and diffusion. The first part is concerned with steady problems. The emphasis is placed upon the use of Petrov-Galerkin methods to reproduce in the finite element context the upwind effect previously used with success in finite differences. The second part deals with transient problems describing pure convection and, more generally, with situations governed by first-order hyperbolic equations. The methods discussed include techniques making an explicit use of the characteristic curves, Petrov-Galerkin and Taylor-Galerkin methods, as well as least-squares methods.

 

Downloads

Download data is not yet available.

References

(BER 81] J. P. Benque and J. Ronat, Quelques difficultes des modeles

numeriques en hydraulique, Fifth Intern. Symp. on Computing Methods

in Applied Sciences and Engineering, INRIA, December 1981,

Versailles, France.

(BIK 82] J. P. Benque, B. lbler, A. Keramsi and G. Labadie, A new finite

element method for the N a vier-Stokes equations coupled with a

temperature equation, in Proc. Fourth Int. Symp. on Finite Element

in Flow Problem, Ed. T. Kawai, North-Holland, 1982, 295-301.

(BRH 80] A.N. Brooks and T .J .R. Hughes, Streamline upwind/PetrovGalerkin

methods for advection dominated flows, Proc. Third Internat.

Con£. on Finite Element Methods in Fluid Flow, Banff, Canada,

(BRH 82] A.N. Brooks and T.J.R. Hughes, Streamline upwind/PetrovGalerkin

formulations for convection dominated flows with particular

emphasis on the incompressible N avier-Stokes equations, Comp.

Meths. Appl. Mech. Engng., 32 (1982), 199-259.

(CAJ 88] G. F. Carey and B. N. Jiang, Least-squares finite elements for firstorder

hyperbolic systems, Int. J. Numer. Meths. Eng. 26 (1988)

-93.

[CGM 76] I. Christie, D.F. Griffiths, A.R. Mitchell and O.C. Zienkiewicz, Finite

element methods for second order differential equations with

significant first derivatives, Internat. J. Numer. Methods Engng.,

(1976), 1389-1396.

[CHR 85] I. Christie, Upwind compact finite difference schemes, J. Comput.

Physics, 59 (1985), 353-368.

(CLI 90] C. W. Li, Least square-characteristics and finite elements for

advection-dispersion simulation, Int. J. Numer. Meths. Eng. 29

(1990), 1343-1364.

(CUM 80] M. J. P. Cullen and K. W. Morton, Analysis of evolutionary error

in finite element and other methods, J. Comput. Phys. 34 (1980)

-267.

[DON 84] J. Donea, A Taylor-Galerkin method for convective transport problems,

Int. J. Numer. Meths. Eng. 20 (1984) 101-120.

(DON 91] J. Donea, Generalized Galerkin methods for convection dominated

transport phenomena, Appl. Mech. Rev., 44 (1991), 205-214.

[DOQ 92] J. Donea and L. Quartapelle, An introduction to finite element methods

for transient advection problems, Comp. Meths. Appl. Mech.

Engrg., 95 (1992), 169-203.

[DQS 87] J. Donea, L. Quartapelle and V. Selmin, An analysis of time discretization

in the finite element solution of hyperbolic problems,

J. Comput. Phys. 70 (1987) 463-499.

[GRM 79] D.F. Griffiths and A.R. Mitchell, On generating upwind finite element

methods, Finite Element Methods for Convection Dominated

Flows, ed. T.J.R. Hughes, AMD Vol. 34, ASME, New York, 1979.

[HBR 79] T.J .R. Hughes and A. Brooks, A multidimensional upwind scheme

with no crosswind diffusion, Finite Element Methods for Convection

Dominated Flows, ed. T.J.R. Hughes, AMD Vol 34, ASME, New

York, 1979.

[HFH 89] T.J .R. Hughes, L.P. Franca and G.M. Hulbert, A new finite element

formulation for computational fluid dynamics: VIII. The Galerkin/

Least-squares method for advective-diffusive equations, Comput.

Meths. Appl. Mech. Eng. 73 (1989) 173-189.

[HHZ 77] J .C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz and A.R. Mitchell,

An 'upwind' finite element scheme for two-dimensional convective

transport equation, Int. J. Numer. Meths. Engrg., 11 (1977), 134-

[HMA 86] T. J. R. Hughes and M. Mallet, A new finite element formulation for

computational fluid dynamics: III. The generalized streamline operator

for multidimensional advection-diffusion systems, Comput.

Meths. Appl. Mech. Eng. 58 (1986) 305-328.

[HUG 89] T.J .R. Hughes, New directions in computational mechanics, Nuclear

Eng. and Design 114 (1989) 197-210.

[HZI 79] J .C. Heinrich and O.C. Zienkiewicz, The finite element method and

'upwinding' techniques in the numerical solution of convection dominated

flow problems, Finite Element Methods for Convection Dominated

Flows, ed. T.J.R. Hughes, AMD Vol. 34, ASME, New York,

[MOR 85] K. W. Morton, Generalized Galerkin methods for hyperbolic problems,

Comput. Meths. Appl. Mech. Eng. 52 (1985) 847-871.

[MOR 87] K. W. Morton, Finite element methods for hyperbolic equations, in

Finite Elements in Physics, R. Gruber, Ed., North-Holland, Amsterdam,

(MPA 80] K. W. Morton and A. K. Parrott, Generalized Galerkin methods

for first-order hyperbolic equations, J. Comput. Phys. 36 (1980)

-270.

(NGR 84] H. Nguyen and J. Reynen, A space-time least-squares finite element

scheme for advection-diffusion equations, Comput. Meths. Appl.

Mech. Eng. 42 (1984) 331-342.

(PAL 90] N .-S. Park and J. A. Liggett, Taylor-least squares finite element

for two-dimensional advection dominated advection-diffusion problems,

Int. J. Numer. Meths. Fluids 11 (1990) 21-38.

(PIR 82] 0. Pironneau, On the transport-diffusion algorithm and its application

to the Navier-Stokes equations, Numer. Math. 38 (1982) 309-

(PIR 88] 0. Pironneau, Methodes des Elements Finis pour les Fluides, Masson,

Paris, 1988.

(PUS 84] J. Pudykiewicz and A. Staniforth, Some properties and comparative

performance of semi-Lagrangian method of Robert in the solution of

the advection-diffusion equation, Atmos. Ocean 22 (1984) 283-308.

(ROB 81] A. Robert, A stable numerical integration scheme for the primitive

meteorological equations, Atmos. Ocean 19 (1981) 35-46.

(ROB 82] A. Robert, A semi-Lagrangian and semi-implicit numerical integration

scheme for the primitive meteorological equations, J. Meteorol.

Soc. (Jpn.) 60 (1982) 319--325.

(SEL 87] V. Selmin, Third-order finite element schemes for the solution of

hyperbolic problems, INRJA Report 707, 1987.

(SHY 85] W. Shyy, A study of finite difference approximations to steadystate,

convection-dominated flow problems, J. Comput. Physics, 57

(1985), 415-438.

[STC 90] A. Staniforth and J. Cote, Semi-Lagrangian integration schemes and

their application to environmental flows, Lecture Notes in Physics,

Springer-Verlag, New York, 1990.

[STF 73] G. Strang and G. J. Fix, An Analysis of the Finite Element Method,

Prentice-Hall, New Jersey, 1973.

[STP 85] A. Staniforth and J. Pudykiewicz, Reply to comments on and

addenda to "Some properties and comparative performance of

semi-Lagrangian method method of Robert in the solution of the

advection-diffusion equation", Atmos. Ocean 23 (1985) 195-200.

[SWE 74] B. Swartz and B. Wendroff, The relation between the Galerkin and

collocation methods using smooth splines, SIAM J. Numer. Anal.

(1974) 1059-1068.

[TSS 89] M. Tanguay, A. Simard and A. Staniforth, A three-dimensional

semi-Lagrangian integration scheme for the Canadian regional

finite-element forecast model, Mon. Weather Rev. 117 (1989) 1861-

Downloads

Published

1992-03-22

How to Cite

Donea, J. . (1992). Methodes d’elements finis pour les problemes de convection-diffusion. European Journal of Computational Mechanics, 1(3), 225–252. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3705

Issue

Section

Original Article