An Error Indicator Based on a Wave Dispersion Analysis for the Vibration Modes of Isotropic Elastic Solids Discretized by Energy-Orthogonal Finite Elements
DOI:
https://doi.org/10.13052/ejcm1958-5829.2833Keywords:
vibration eigenmodes.Abstract
This paper studies the dispersion of elastic waves in isotropic media discretized by the finite element method. The element stiffness matrix is split into basic and higher order components which are respectively related to the mean and deviatoric components of the element strain field. This decomposition is applied to the elastic energy of the finite element assemblage. By a dispersion analysis the higher order elastic energy is related to the elastic energy error for the propagating waves. An averaged correlation is proposed and successfully tested as an error indicator for finite element vibration eigenmodes.
Downloads
References
F. J. Fahy, ‘Sound and Structural Vibration’, Academic Press, London,1985.2. J. D. Achenbach, ‘Wave Propagation in Elastic Solids’, Elsevier,Amsterdam, 1975.3. H. L. Schreyer, ‘Dispersion of Semidiscretized and Fully DiscretizedSystems’, in T. Belytschko and T. J. R. Hughes (eds.), ‘ComputationalMethods for Transient Analysis’, Elsevier, Amsterdam, 1983.4. P. Langer, M. Maeder, C. Guist, M. Krause, and S. Marburg, ‘Morethan Six Elements per Wavelength: the Practical Use of Structural FiniteElement Models and their Accuracy in Comparison with ExperimentalResults’,J. Comput. Acoust., vol. 25, 2017.
An Error Indicator based on a Wave Dispersion Analysis2055. F. J. Brito Castro, ‘An Error Indicator Based on a Wave DispersionAnalysis for the In-Plane Vibration Modes of Isotropic Elastic Solids Dis-cretized by Energy-Orthogonal Finite Elements’, COMPDYN2017 VIECCOMAS Thematic Conference on Computational Methods in Struc-tural Dynamics and Earthquake Engineering, Rhodes Island, Greece,2017.6. C. A. Felippa, ‘A Survey of Parametrized Variational Principles andApplications to Computational Mechanics’,Comput. Meth. Appl. Mech.Eng., vol. 113, pp. 109–139, 1994.7. K. J. Bathe, ‘Finite Element Procedures’, Prentice Hall, 1996.8. C. A. Felippa, B. Haugen, and C. Militello, ‘From the Individual ElementTest to Finite Element Templates: Evolution of the Patch Test’,Int. J.Num. Meth. Eng., vol. 38, pp. 199–229, 1995.9. O. C. Zienkiewicz and R. L. Taylor, ‘Finite Element Method, Volume 1:the Basis’, Butterworth-Heinemann, Oxford MA, 2000.10. S. I. Rokhlin, D. E. Chimenti, and P. B. Nagy, ‘Physical Ultrasonics ofComposites’, Oxford University Press, New York, 2011.11. M. Okrouhlík and C. Höschl, ‘A Contribution to the Study of DispersiveProperties of One-Dimensional Lagrangian and Hermitian Elements’,Computers and Structures, vol. 49, pp. 779–795, 1993.12. R. A. Horn and C. R. Johnson, ‘Matrix Analysis’, Cambridge UniversityPress, Cambridge, 1992.13. R. B. King, ‘Beyond the Quartic Equation’, Birkhäuser, Boston, 1996.14. Z.-Q. Qu, ‘Model Order Reduction Techniques: with Applications inFinite Element Analysis’, Springer, London, 2004.15. L. Brillouin, ‘Wave Propagation in Periodic Structures’, Dover Publica-tions, New York, 2003.16. R. H. MacNeal, ‘Finite Elements: their Design and Performance’, MarcelDekker, New York, 1994.17. J. Barlow, ‘More on Optimal Stress Points-Reduced Integration, ElementDistortions, and Error Estimation’,Int. J. Num. Meth. Eng., vol. 28,pp. 1487–1504, 1989.18. M. Kaltenbacher, ‘Numerical Simulation of Mechatronic Sensors andActuators’, Springer, Berlin, 2015.19. M. Petyt, ‘Introduction to Finite Element Vibration Analysis’, CambridgeUniversity Press, Cambridge, 2010