Fracture Prediction Based on Evaluation of Initial Porosity Induced By Direct Energy Deposition
DOI:
https://doi.org/10.13052/ejcm2642-2085.29233Keywords:
Directed Energy Deposition (DED), Additive Manufacturing (AM), Porosity, Mechanical Behavior, Initiation and Propagation of CracksAbstract
Additive manufacturing (AM) of metals proved to be beneficial in many industrial and non-industrial areas due to its low material waste and fast stacking speed to fabricate high performance products. The present contribution addresses several known challenges including mechanical behaviour and porosity analysis on directed energy deposition (DED) manufactured stainless steel 316L components. The experimental methodology consisting of metal deposition procedure, hardness testing and fractographic observations on manufactured mini-tensile test samples is described. A ductile fracture material model based on the Rousselier damage criterion is utilized within a FE framework for evaluation of material global response and determination of initial porosity value representing the structure’s nucleating void population. Alternatively, the initial pore sizes are characterized using the generalized mixture rule (GMR) analysis and the validity of the approach is examined against the experimental results.
Downloads
References
Bandyopadhyay A, Bose S, Das S. 3D printing of biomaterials. MRS Bull 2015;40:108–14. https://doi.org/10.1557/mrs.2015.3.
Tofail SAM, Koumoulos EP, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C. Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 2018;21:22–37. https://doi.org/10.1016/j.mattod.2017.07.001.
DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, et al. Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci 2018;92:112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001.
Mirkoohi E, Seivers DE, Garmestani H, Liang SY. Heat source modeling in selective laser melting. Materials (Basel) 2019;12:1–18. https://doi.org/10.3390/ma12132052.
ASTM International. ASTM International Technical Committee F42 on Additive Manufacturing Technologies 2013:19428.
Mazumder J, Schifferer A, Choi J. Direct materials deposition: designed macro and microstructure. Mater Res Soc Symp - Proc 1999;542:51–63. https://doi.org/10.1557/proc-542-51.
Hofmeister W, Griffith M, Ensz M, Smugeresky J. Solidification in direct metal deposition by LENS processing. Jom 2001;53:30–4. https://doi.org/10.1007/s11837-001-0066-z.
Gasser A, Backes G, Kelbassa I, Weisheit A, Wissenbach K. Laser Additive Manufacturing: Laser Metal Deposition (LMD) and Selective Laser Melting (SLM) in Turbo-Engine Applications. Laser Tech J 2010;7:58–63. https://doi.org/10.1002/latj.201090029.
Liu R, Wang Z, Sparks T, Liou F, Newkirk J. Aerospace applications of laser additive manufacturing. Elsevier Ltd; 2017. https://doi.org/10.1016/B978-0-08-100433-3.00013-0.
Rashid A. Additive Manufacturing Technologies. CIRP Encycl Prod Eng 2019:39–46. https://doi.org/10.1007/978-3-662-53120-4_16866.
Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS. The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 2016;61:315–60. https://doi.org/10.1080/09506608.2015.1116649.
Wolff S, Lee T, Faierson E, Ehmann K, Cao J. Anisotropic properties of directed energy deposition (DED)-processed Ti–6Al–4V. J Manuf Process 2016;24:397–405. https://doi.org/10.1016/j.jmapro.2016.06.020.
Muller P, Mognol P, Hascoet JY. Modeling and control of a direct laser powder deposition process for Functionally Graded Materials (FGM) parts manufacturing. J Mater Process Technol 2013;213:685–92. https://doi.org/10.1016/j.jmatprotec.2012.11.020.
Antony K, Arivazhagan N, Senthilkumaran K. Numerical and experimental investigations on laser melting of stainless steel 316L metal powders. J Manuf Process 2014;16:345–55. https://doi.org/10.1016/j.jmapro.2014.04.001.
Zhang K, Wang S, Liu W, Shang X. Characterization of stainless steel parts by Laser Metal Deposition Shaping. Mater Des 2014;55:104–19. https://doi.org/10.1016/j.matdes.2013.09.006.
Li J, Deng D, Hou X, Wang X, Ma G, Wu D, et al. Microstructure and performance optimisation of stainless steel formed by laser additive manufacturing. Mater Sci Technol (United Kingdom) 2016;32:1223–30. https://doi.org/10.1080/02670836.2015.1114774.
Kobryn PA, Semiatin SL. Mechanical Properties of Laser-Deposited Ti-6Al-4V P.A. Kobryn and S.L. Semiatin Air Force Research Laboratory, AFRL/MLLMP, Wright-Patterson Air Force Base, OH 45433-7817 2013:179–86.
Ahmadi A, Mirzaeifar R, Moghaddam NS, Turabi AS, Karaca HE, Elahinia M. Effect of manufacturing parameters on mechanical properties of 316L stainless steel parts fabricated by selective laser melting: A computational framework. Mater Des 2016;112:328–38. https://doi.org/10.1016/j.matdes.2016.09.043.
Guo P, Zou B, Huang C, Gao H. Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition. J Mater Process Technol 2017;240:12–22. https://doi.org/10.1016/j.jmatprotec.2016.09.005.
Suryawanshi J, Prashanth KG, Ramamurty U. Mechanical behavior of selective laser melted 316L stainless steel. Mater Sci Eng A 2017;696:113–21. https://doi.org/https://doi.org/10.1016/j.msea.2017.04.058.
N. Iqbal, E. Jimenez-Melero, U. Ankalkhope and JL. Microstructure and Mechanical Properties of 316L Stainless Steel Fabricated Using Selective Laser Melting. MRS Adv 2019;4:2431–9. https://doi.org/https://doi.org/10.1557/adv.2019.251.
Saboori A, Aversa A, Bosio F, Bassini E, Librera E, De Chirico M, et al. An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by Directed Energy Deposition. Mater Sci Eng A 2019;766:138360. https://doi.org/10.1016/j.msea.2019.138360.
Bosio F, Saboori A, Lacagnina A, Librera E, de Chirico M, Biamino S, et al. Directed energy deposition of 316L steel: Effect of type of powders and gas related parameters. Euro PM 2018 Congr Exhib 2020.
Saboori A, Toushekhah M, Aversa A, Lai M, Lombardi M, Biamino S, et al. Critical Features in the Microstructural Analysis of AISI 316L Produced By Metal Additive Manufacturing. Metallogr Microstruct Anal 2020;9:92–6. https://doi.org/10.1007/s13632-019-00604-6.
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017;18:1–26. https://doi.org/10.1186/s12859-017-1934-z.
Tu H, Schmauder S, Li Y. 3D optical measurement and numerical simulation of the fracture behavior of Al6061 laser welded joints. Eng Fract Mech 2019;206:501–8. https://doi.org/10.1016/j.engfracmech.2018.12.005.
Azinpour E, Darabi R, Cesar de Sa J, Santos A, Hodek J, Dzugan J. Fracture analysis in directed energy deposition (DED) manufactured 316L stainless steel using a phase-field approach. Finite Elem Anal Des 2020;177:103417. https://doi.org/10.1016/j.finel.2020.103417.
Rousselier G. Dissipation in porous metal plasticity and ductile fracture. J Mech Phys Solids 2001;49:1727–46. https://doi.org/10.1016/S0022-5096(01)00013-8.
Rousselier G. Ductile fracture models and their potential in local approach of fracture. Nucl Eng Des 1987;105:97–111. https://doi.org/10.1016/0029-5493(87)90234-2.
King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE, et al. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 2014;214:2915–25. https://doi.org/10.1016/j.jmatprotec.2014.06.005.
Darvish K, Chen ZW, Pasang T. Reducing lack of fusion during selective laser melting of CoCrMo alloy: Effect of laser power on geometrical features of tracks. Mater Des 2016;112:357–66. https://doi.org/10.1016/j.matdes.2016.09.086.
Wolff SJ, Lin S, Faierson EJ, Liu WK, Wagner GJ, Cao J. A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V. Acta Mater 2017;132:106–17. https://doi.org/10.1016/j.actamat.2017.04.027.
Ji S, Gu Q, Xia B. Porosity dependence of mechanical properties of solid materials. J Mater Sci 2006;41:1757–68. https://doi.org/10.1007/s10853-006-2871-9.
Mukherjee T, Zuback JS, De A, DebRoy T. Printability of alloys for additive manufacturing. Sci Rep 2016;6:1–8. https://doi.org/10.1038/srep19717.
R. Byron Bird Warren E. Stewart Edwin N. Lightfoo, Bird RB, Stewart WE, Lightfoot EN. Transport Phenomena, Revised 2nd Edition. John Wiley Sons, Inc 2006:780. https://doi.org/10.1002/aic.690070245.
Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with imageJ. Biophotonics Int 2004;11:36–41. https://doi.org/10.1201/9781420005615.ax4.
Del Guercio G, Galati M, Saboori A, Fino P, Iuliano L. Microstructure and Mechanical Performance of Ti–6Al–4V Lattice Structures Manufactured via Electron Beam Melting (EBM): A Review. Acta Metall Sin (English Lett 2020;33:183–203. https://doi.org/10.1007/s40195-020-00998-1.
Izadi M, Farzaneh A, Gibson I, Rolfe B. The Effect of Process Parameters and Mechanical Properties of Direct Energy Deposited Stainless Steel 316. Solid Free Fabr 2017 Proc 28th Annu Int Solid Free Fabr Symp – An Addit Manuf Conf 2017:1058–67.
Gao X, Wang T, Kim J. On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution. Int J Solids Struct 2005;42:5097–117. https://doi.org/10.1016/j.ijsolstr.2005.02.028.