Spectrally formulated user-defined element in conventional finite element environment for wave motion analysis in 2-D composite structures
Keywords:
Wavelet spectral finite element, user-defined element, wave propagation, structural health monitoring, composite structuresAbstract
Wave propagation analysis in 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first-order shear deformation theory which yields accurate results for wave motion at high frequencies. The 2-D WSFE model is highly efficient computationally and provides a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus (commercial finite element software) for wave propagation analysis in 2-D composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Five numerical examples are presented in this article, namely undamaged plate, impacted plate, plate with ply drop, folded plate and plate with stiffener. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features.
Downloads
References
Beskos, D. E. (1997). Boundary element methods in dynamic analysis: Part II (1986–1996).
Applied Mechanics Reviews, 50, 149. doi:10.1115/1.3101695
Boller, C., Chang, F.-K., & Fujino, Y. (2009). Encyclopedia of structural health monitoring,
Vol. 4. Chichester: Wiley.
Chimenti, D. E. (1997). Guided waves in plates and their use in materials characterization.
Applied Mechanics Reviews, 50, 247. doi:10.1115/1.3101707
Dassault Systèmes Simulia Corp. 2014. Abaqus V-6.14. User’s Manual 2014.
Daubechies, I. (1992). Ten lectures on wavelets, Vol. 61. Philadelphia, PA: Society for industrial
and applied mathematics.
Diamanti, K., & Soutis, C. (2010). Structural health monitoring techniques for aircraft composite
structures. Progress in Aerospace Sciences, 46, 342–352. doi:10.1016/j.paerosci.2010.05.001
Doyle, J. F. (2012). Wave propagation in structures: Spectral analysis using fast discrete Fourier
transforms. Springer Science & Business Media.
Fornberg, B. (1987). The pseudospectral method: Comparisons with finite differences for the
elastic wave equation. Geophysics, 52, 483–501. doi:10.1190/1.1442319
Giurgiutiu, V. (2007). Structural health monitoring: With piezoelectric wafer active sensors.
Academic Press.
Gopalakrishnan, S., & Mitra, M. (2010). Wavelet methods for dynamical problems, Vol. 1, Boca
Raton, FL: CRC Press/Taylor & Francis. doi:10.1201/9781439804629
Gopalakrishnan, S., Chakraborty, A., & Mahapatra, D. R. (2008). Spectral finite element method.
London: Springer. doi:10.1007/978-1-84628-356-7
Graff, K. F. (1975). Wave motion in elastic solids. Courier Corporation.
Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using staggeredgrid
finite differences. Bulletin of the Seismological Society of America, 86, 1091–1106.
Hongbao, M. (2014). Complex number. Natural Science, 4, 71–78.
Khalili, A., Samaratunga, D., Jha, R., & Gopalakrishnan S. (2014). Wavelet spectral finite element
modeling of laminated composite beams with complex features. Proceedings of the American
Society for Composites 2014-Twenty-ninth Technical Conference on Composite Materials,
San Diego, CA.
Khalili, A., Samaratunga, D., Jha, R., Lacy, T. E., & Gopalakrishnan S. (2015). Wavelet spectral
finite element based user-defined element in ABAQUS for modeling delamination in composite
beams. 23rd AIAA/ASME/AHS Adaptive Structures Conference, Kissimmee, FL, pp. 1–11.
Lee, B. C., & Staszewski, W. J. (2003). Modelling of Lamb waves for damage detection in
metallic structures: Part I. Smart Materials and Structures, 12, 804–814. doi:10.1088/0964-
/12/5/018
Lowe, M., & Pavlakovic B. (2013). Disperse. London: Imperial College.
Mitra, M., & Gopalakrishnan, S. (2008). Wave propagation analysis in anisotropic plate using
wavelet spectral element approach. Journal of Applied Mechanics, 75, 014504(1)–014504(6).
doi:10.1115/1.2755125
Nayfeh, A. H. (1995). Wave propagation in layered anisotropic media: With applications to
composites. Elsevier.
Ochoa, O. O., & Reddy, J. N. (1992). Finite element analysis of composite laminates. Springer
Science & Business Media.
Raghavan, A., & Cesnik, C. E. S. (2007). Review of Guided-wave Structural Health Monitoring.
The Shock and Vibration Digest, 39, 91–114. doi:10.1177/058310240
Rose, J. L. (2004). Ultrasonic waves in solid media. Cambridge University Press.
Salahouelhadj, A., Abed-Meraim, F., Chalal, H., & Balan, T. (2012). Application of the
continuum shell finite element SHB8PS to sheet forming simulation using an extended large
strain anisotropic elastic-plastic formulation. Archive of Applied Mechanics, 82, 1269–1290.
doi:10.1007/s00419-012-0620-x
Samaratunga, D., Jha, R., & Gopalakrishnan, S. (2014a). Wavelet spectral finite element for
wave propagation in shear deformable laminated composite plates. Composite Structures,
, 341–353. doi:10.1016/j.compstruct.2013.09.027
Samaratunga, D., Jha, R., & Gopalakrishnan, S. (2014b). Wave propagation analysis in laminated
composite plates with transverse cracks using the wavelet spectral finite element method.
Finite Elements in Analysis and Design, 89, 19–32. doi:10.1016/j.finel.2014.05.014
Samaratunga, D., Jha, R., & Gopalakrishnan, S. (2014c). Wave propagation analysis in adhesively
bonded composite joints using the wavelet spectral finite element method. Finite Elements
in Analysis and Design, 89, 19–32. doi:10.1016/j.finel.2014.05.014
Samaratunga, D., Jha, R., & Gopalakrishnan, S. (2016). Wavelet spectral finite element for
modeling guided wave propagation and damage detection in stiffened composite panels.
Structural Health Monitoring, 15, 317–334.
Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations. Society
for Industrial and Applied Mathematics, Second Edition, Pacific Grove, CA.
Su, Z., Ye, L., & Lu, Y. (2006). Guided lamb waves for identification of damage in composite
structures: A review. Journal of Sound and Vibration, 295, 753–780. doi:10.1016/
j.jsv.2006.01.020
Talbot, J. R., &, Przemieniecki, J. S. (1975). Finite element analysis of frequency spectra for elastic
waveguides. International Journal of Solids and Structures, 11, 115–138. doi:10.1016/0020-
(75)90106-7