An efficient time-stepping scheme for numerical simulation of dendritic crystal growth
Keywords:
Dendritic crystal growth, phase-field model, diagonally implicit fractional step θ-scheme, conforming finite element methodAbstract
In this article, we present an adaptive time-stepping technique for numerical simulation of dendritic crystal growth model. The diagonally implicit fractional step θ-scheme for time discretisation and conforming Q1 finite-element method for space discretisation are used. The performance of the scheme is illustrated by simulating two-dimensional dendritic crystal growth problem, allowing the comparison with other numerical methods. In addition, traditional diagonally implicit Runge–Kutta method is used and comparison is given with the proposed scheme. Robustness is observed for the present scheme. Parametric effects on the growth and shape of dendrites are also given.
Downloads
References
Alexander, R. (1977). Diagonally implicit Runge-Kutta methods for stiff O.D.E’s. SIAM
Journal on Numerical Analysis, 14, 1006–1021.
Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., ... Sander, O.
(2008). A generic grid interface for parallel and adaptive scientific computing. Part II:
Implementation and tests in DUNE. Computing, 82, 121–138.
Bastian, P., Blatt, M., Dedner, A., Engwer, C.,Klöfkorn, R., Ohlberger, M.,&Sander, O. (2008).
A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract
framework. Computing, 82, 103–119.
Bastian, P., Blatt, M., Engwer, C., Dedner, A., Klöfkorn, R., Kuttanikkad, S. P., & Sander, O.
(2006). The distributed and unified numerics environment. In Proceedings 19th Symposium
Simulation Technical, Hanover.
Bastian, P., & Helmig, R. (1999). Efficient fully-coupled solution techniques for two-phase
flow in porous media: Parallel multigrid solution and large scale computations. Advances
in Water Resources, 23, 199–216.
Bastian, P., & Rivière, B. (2004). Discontinuous galerkin methods for two-phase flow in porous
media, Technical Report. IWR: University of Heidelberg. 24.
Biben, T. (2005). Phase-field models for free-boundary problems. The European Journal of
Physics, 26, 147–55.
Blatt, M., & Bastian, P. (2007). The iterative solver semplate library. Applications Parallel
Computing, 4699, 666–675.
Blatt, M., & Bastian, P. (2008). On the generic parallelisation of iterative solvers for the finite
element method. Physica D: Nonlinear Phenomena, 4, 56–69.
Boettinger, W. J., Coriell, S. R., Greer, A. L., Karma, A., Kurz, W., Rappaz, M., & Trivedi,
R. (2000). Solidification microstructures: Recent developments, future directions. Acta
Metallurgica, 48, 43–70.
Bollada, P., Jimack, P., & Mullis, A. (2012). A new approach to multi-phase formulation for
the solidification of alloys. Physica D: Nonlinear Phenomena, 241, 816–829.
Collins, J., & Levine, H. (1985). Diffuse interface model of diffusion-limited crystal growth.
Physica D: Nonlinear Phenomena, 31, 6119–6122.
Copley, S. M., Todd, J. A., Yankova,M., & Yankov, E. Y. (1996). Solidification of Agcu alloys
at high growth rates produced by continuous laser melt quenching. Laser Processing, 307,
–119.
Dedner, A., Kl´’ofkorn, R., Nolte, M., & Ohlberger, M. (2010). A generic interface for parallel
and adaptive discretization schemes: Abstraction principles and the Dune-Fem module.
Philosophical Transactions of the Royal Society, 90, 165-196.
Fix, G. J. (1983). Free boundary problems: Theory and applications. Pitman, Boston, 2, 580–
Glowinski, R. (2003). Finite element methods for incompressible viscous flow. Handbook
Numerical Analysis, 9, 3–1171.
Goodyer, C., Jimack, K.,Mullis, A.,Dong, H.,&Xie, Y. (2012).Onthe fully implicit solution of
a phase-field model for binary alloy solidification in three dimensions. Advances in Applied
Mathematics and Mechanics, 4, 665–684.
Haxhimali, T., Karma, A., Gonzales, F., & Rappaz, M. (2006). Orientation of selection in
dendretic evolution. Nature Materials, 5, 2016–2024.
Hughes, T. J. R. (2008). The finite element method: Linear static and dynamic finite element
analysis. Computer-Aided Civil Infrastructure Engineering, 4, 245–246.
Kobayashi, R. (2006). Modeling and numerical simulations of dendritic crystal growth.
Journal of Computational Physics, 218, 770–793.
Madzvamuse, A. (2006). Time-stepping schemes for moving grid finite elements applied to
reaction diffusion systems on fixed and growing domains. Journal of Computer Physics, 214,
–263.
McFadden, G. B.,Wheeler, A. A., Braun, R. J., Coriell, S. R., & Sekerkan, R. F. (1993). Phasefield
models for anisotropic interfaces. Physical Review E, 48, 2016–2024.
Mullis, A., Bollada, P., & Jimack, P. (2014). Towards a 3-dimensional phase-field model of
non-isothermal alloy solidification. Materials Science Forum, 783, 2166–2171.
Mullis, A., Goodyer, C., & Jimack, P. (2012). Towards a 3-dimensional phase-field model of
dendritic solidification with physically realistic interface width. Transactions of the Indian
Institute of Metals, 65, 617–621.
Nishinaga, T., & Rudolph, P. (2014). Handbook of crystal growth. CondensedMatter Physics,
, 1075–1080.
Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed:
Algorithm based one Hamilton–Jacobi formulations. Journal of Computational Physics,
, 12–49.
Quarteroni, A., Sacco, R., & Saleri, F. (2008). Texts in applied mathematics. Numerical
Mathematics, 37, 1–4.
Ruuth, S. J. (1995). Implicit-explicit methods for reaction-diffusion problems in pattern
formation. Journal of Mathematical Biology, 34, 148–176.
Saad, Y. (2003). Iterative methods for sparse linear systems. SAIM, 2, 217–244.
Shah,A., Haider,A.,&Shah, S. K. (2014). Numerical simulation of two-dimensional dendritic
growth using phase-field model. World Journal of Mechanics, 4, 128–136.
Thomee, V. (2006). Galerkin finite element methods for parabolic problems. Springer Serials
in Computer Mathematics, 25, 2016–2024.
Wang, S. L., & Sekerka, R. F. (1993). Thermodynamically-consistent phase-field models for
solidification. Physica D: Nonlinear Phenomena, 69, 189–200.
Wheeler, A. A., Murray, B. T., & Schaefer, R. J. (1993). Computation of dendrites using a
phase field model. Physica D: Nonlinear Phenomena, 66, 243–262.