Assessment and practical application of mapping algorithms for beam elements in computational FSI
Keywords:
Non-matching meshes, fluid-structure interaction, aeroelasticity, nonlinear beam, co-rotating formulation, wet surface reconstructionAbstract
If a beam structure is modelled by 1D finite elements in a fluid–structure interaction (FSI) simulation, due to dimensional reduction in beam theory, the actual structural surface is not available which results in non-matching discrete geometries of the FSI interface. A linearised and a co-rotating algorithms applying the corresponding beam kinematics are proposed in another work to map deformation and load between the 1D beam mesh and the 2D surface mesh. In this work, the convergence behaviour of both algorithms is assessed with analytically described deformation. Besides, efficient treatments for both structured and unstructured fluid wet-surface meshes as well as treatment for connected beams are introduced as a practical extension to the core algorithm. Moreover, mapping is applied in the FSI simulation of a wind turbine where the rotor blades are modelled by beam elements.
Downloads
References
Ahrem, R., Beckert,A.,&Wendland, H. (2007). Recovering rotations in aeroelasticity. Journal
of Fluids and Structures, 23, 874–884.
Bathe, K.-J., & Bolourchi, S. (1979). Large displacement analysis of three-dimensional beam
structures. International Journal for Numerical Methods in Engineering, 14, 961–986.
Bazilevs, Y., Takizawa, K., & Tezduyar, T. E. (2013a). Challenges and directions in
computational fluid–structure interaction. Mathematical Models and Methods in Applied
Sciences, 23, 215–221.
Bazilevs, Y., Takizawa, K., & Tezduyar, T. E. (2013b). Computational fluid–structure
interaction: Methods and applications. Wiley.
Beckert, A., & Wendland, H. (2001). Multivariate interpolation for fluid–structure–
interaction problems using radial basis functions. Aerospace Science and Technology,
, 125–134.
Belver, A. V., Foces Mediavilla, A., Lorenzana Iban, A., & Rossi, R. (2010). Fluid–structure
coupling analysis and simulation of a slender composite beam. Science and Engineering of
Composite Materials, 17, 47–77.
Bernardi, C., Maday, Y., & Patera, A. T. (1994). A new nonconforming approach to domain
decomposition: The mortar element method. Nonlinear Partial Differential Equations and
Their Applications.
Blasques, J. P. A. A., Bitsche, R., Fedorov, V., & Eder, M. A. (2013). Applications of the
beam cross section analysis software (becas). In Proceedings of the 26th Nordic Seminar on
Computational Mechanics, (pp. 46–49).
Blom, F. J. (1998). A monolithical fluid–structure interaction algorithm applied to the piston
problem. Computer Methods in Applied Mechanics and Engineering, 167, 369–391.
Bottasso, C., Campagnolo, F., Croce, A., & Tibaldi, C. (2013). Optimization-based study of
bend-twist coupled rotor blades for passive and integrated passive/active load alleviation.
Wind Energy, 16, 1149–1166.
Chen, H., Yu, W., & Capellaro, M. (2010). A critical assessment of computer tools for
calculating composite wind turbine blade properties. Wind Energy, 13, 497–516.
Cordero-Gracia, M., Gómez, M., & Valero, E. (2014). A radial basis function algorithm for
simplified fluid–structure data transfer. International Journal for Numerical Methods in
Engineering, 99, 888–905.
de Boer, A., van Zuijlen, A. H., & Bijl, H. (2008). Comparison of conservative and consistent
approaches for the coupling of non-matching meshes. Computer Methods in Applied
Mechanics and Engineering, 197, 4284–4297.
De Hart, J., Peters, G., Schreurs, P., & Baaijens, F. (2003). A three-dimensional computational
analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 36, 103–
De Rosis, A., Falcucci, G., Ubertini, S., & Ubertini, F. (2013). A coupled lattice boltzmannfinite
element approach for two-dimensional fluid–structure interaction. Computers &
Fluids, 86, 558–568.
Degroote, J., Bruggeman, P., Haelterman, R., & Vierendeels, J. (2008). Stability of a coupling
technique for partitioned solvers in FSI applications. Computers & Structures, 86, 2224–
Donea, J., Huerta, A., Ponthot, J.-P., & Rodriguez-Ferran, A. (2004). Encyclopedia of
computationalmechanics, Vol. 1: Fundamentals,Chapter 14: Arbitrary Lagrangian–Eulerian
methods.
Farhat, C., Van der Zee, K. G., & Geuzaine, P. (2006). Provably second-order time-accurate
loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity.
Computer Methods in Applied Mechanics and Engineering, 195, 1973–2001.
Felippa, C., & Haugen, B. (2005). A unified formulation of small-strain corotational finite
elements: I. Theory. Computer Methods in Applied Mechanics and Engineering, 194, 2285–
Felippa, C., Park, K., & Ross, M. (2010). A classification of interface treatments for FSI, in:
Fluid Structure Interaction II. Springer. (pp. 27–51).
Fernández, M. Á., & Moubachir, M. (2005). A newton method using exact jacobians for
solving fluid–structure coupling. Computers & Structures, 83, 127–142.
Gerstenberger, A., & Wall, W. A. (2008). Enhancement of fixed-grid methods towards
complex fluid–structure interaction applications. International Journal for Numerical
Methods in Fluids, 57, 1227–1248.
Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S., & Larwood, S. (2001).
Unsteady aerodynamics experiment phaseVI:Windtunnel test configurations and available
data campaigns. NREL/TP-500-29955.
Hansen, M. O. L., Sørensen, J. N., Voutsinas, S., Sørensen, N., & Madsen, H. A. (2006). State
of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences,
, 285–330.
Hirt, C., Amsden, A. A., & Cook, J. (1974). An arbitrary Lagrangian–Eulerian computing
method for all flow speeds. Journal of Computational Physics, 14, 227–253.
Holmes, J. D. (2015). Wind loading of structures. CRC Press.
Hou, G.,Wang, J., & Layton, A. (2012). Numerical methods for fluid–structure interaction –
A review. Communications in Computational Physics, 12, 337–377.
Hsu, M.-C., & Bazilevs, Y. (2012). Fluid–structure interaction modeling of wind turbines:
Simulating the full machine. Computational Mechanics, 50, 821–833.
Jaiman, R., Jiao, X., Geubelle, P., & Loth, E. (2006). Conservative load transfer along curved
fluid-solid interface with non-matching meshes. Journal of Computational Physics, 218,
–397.
Kindmann, R., & Kraus, M. (2004). Steel structures: Design using FEM. Ernst & Sohn.
Klöppel, T., Popp, A., Küttler, U., &Wall, W. A. (2011). Fluid-structure interaction for nonconforming
interfaces based on a dual mortar formulation. Computer Methods in Applied
Mechanics and Engineering, 200, 3111–3126.
Krenk, S. (2009). Non-linear modeling and analysis of solids and structures. Cambridge
University Press.
Küttler, U., & Wall, W. A. (2009). Vector extrapolation for strong coupling fluid–structure
interaction solvers. Journal of Applied Mechanics, 76, 21–205.
Li, Z., & Vu-Quoc, L. (2010). A mixed co-rotational 3D beam element formulation for
arbitrarily large rotations. Advanced Steel Construction, 6, 767–787.
Malcolm, D. J., & Laird, D. L. (2007). Extraction of equivalent beam properties from blade
models. Wind Energy, 10, 135–157.
Michler, C., Van Brummelen, E., & De Borst, R. (2005). An interface Newton–Krylov solver
for fluid-structure interaction. International Journal for Numerical Methods in Fluids, 47,
–1195.
Mittal, S., & Tezduyar, T. E. (1995). Parallel finite element simulation of 3D incompressible
flows: Fluid-structure interactions. International Journal for Numerical Methods in Fluids,
, 933–953.
Onate, E., Idelsohn, S. R., Celigueta, M. A., & Rossi, R. (2008). Advances in the particle finite
element method for the analysis of fluid-multibody interaction and bed erosion in free
surface flows. Computer Methods in Applied Mechanics and Engineering, 197, 1777–1800.
Patil, M. J., Hodges, D. H., & Cesnik, C. E. S. (2001). Nonlinear aeroelasticity and flight
dynamics of high-altitude long-endurance aircraft. Journal of Aircraft, 38, 88–94.
Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.
Piperno, S., & Farhat, C. (2001). Partitioned procedures for the transient solution of coupled
aeroelastic problems-Part II: Energy transfer analysis and three-dimensional applications.
Computer Methods in Applied Mechanics and Engineering, 190, 3147–3170.
Press, W., Teukolsky, S., Vetterline, W., & Flannery, B. P. (2007). Numerical recipes 3rd
edition: The art of scientific computing. Cambridge University Press.
Puso, M. A. (2004). A 3D mortar method for solid mechanics. International Journal for
Numerical Methods in Engineering, 59, 315–336.
Puso,M. A.,&Laursen, T. A. (2004).Amortar segment-to-segment frictional contactmethod
for large deformations. Computer Methods in Applied Mechanics and Engineering, 193,
–4913.
Rabczuk, T., Gracie, R., Song, J.-H., & Belytschko, T. (2010). Immersed particle method for
fluid–structure interaction. International Journal for Numerical Methods in Engineering,
, 48.
Ryzhakov, P., Rossi, R., Idelsohn, S. R., & Oñate, E. (2010). Amonolithic lagrangian approach
for fluid–structure interaction problems. Computational Mechanics, 46, 883–899.
Sicklinger, S. (2014). Stabilized co-simulation of coupled problems including fields and signals
(Ph.D. thesis). Technische Universität München.
Sicklinger, S., Lerch, C.,Wüchner, R., & Bletzinger, K.-U. (2015). Fully coupled co-simulation
of a wind turbine emergency brake maneuver. Journal of Wind Engineering and Industrial
Aerodynamics, 144, 134–145.
Simiu, E., & Scanlan, R. H. (1996). Wind effects on structures. Wiley.
Smith,M. J.,Cesnik,C. E.,&Hodges,D.H. (2000). Evaluation of some data transfer algorithms
for noncontiguous meshes. Journal of Aerospace Engineering, 13, 52–58.
Streiner, S. (2011). Beitrag zur numerischen Simulation der Aerodynamik und Aeroelastik
großer Windkraftanlagen mit horizontaler Achse. Verlag Dr. Hut.
Tezduyar, T., Behr, M., & Liou, J. (1992a). A new strategy for finite element computations
involving moving boundaries and interfaces-the deforming-spatial-domain/space-time
procedure: I. The concept and the preliminary numerical tests. Computer Methods in
Applied Mechanics and Engineering, 94, 339–351.
Tezduyar, T., Behr, M., Mittal, S., & Liou, J. (1992b). A new strategy for finite
element computations involving moving boundaries and interfaces-the deforming-spatialdomain/
space-time procedure: II. Computation of free-surface flows, two-liquid flows, and
flows with drifting cylinders. Computer Methods in AppliedMechanics and Engineering, 94,
–371.
Unger, R., Haupt, M. C., &Horst, P. (2007). Application of lagrange multipliers for coupled
problems in fluid and structural interactions. Computers & structures, 85, 796–809.
Varello, A., Demasi, L., Carrera, E., & Giunta, G. (2010). An improved beam formulation
for aeroelastic applications. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials Conference, (pp. 12–15).
Wang, H., Chessa, J., Liu, W. K., & Belytschko, T. (2008). The immersed/fictitious element
method for fluid–structure interaction: Volumetric consistency, compressibility and thin
members. International Journal for Numerical Methods in Engineering, 74, 32–55.
Wang, T., Wüchner, R., Sicklinger, S., & Bletzinger, K.-U. (2016). Assessment and
improvement of mapping algorithms for non-matching meshes and geometries in
computational FSI. Computational Mechanics, 57, 793–816.
Wohlmuth, B. I. (2000). A mortar finite element method using dual spaces for the lagrange
multiplier. SIAM Journal on Numerical Analysis, 38, 989–1012.
Wunderlich,W., & Kiener, G. (2004). Statik der Stabtragwerke. Vieweg+Teubner Verlag.
Zhu, L., & Peskin, C. S. (2002). Simulation of a flapping flexible filament in a flowing soap
film by the immersed boundary method. Journal of Computational Physics, 179, 452–468.