Assessment and practical application of mapping algorithms for beam elements in computational FSI

Authors

  • Tianyang Wang Chair of Structural Analysis, Technische Universität München, München, Germany
  • Roland Wüchner Chair of Structural Analysis, Technische Universität München, München, Germany
  • Kai-Uwe Bletzinger Chair of Structural Analysis, Technische Universität München, München, Germany

Keywords:

Non-matching meshes, fluid-structure interaction, aeroelasticity, nonlinear beam, co-rotating formulation, wet surface reconstruction

Abstract

If a beam structure is modelled by 1D finite elements in a fluid–structure interaction (FSI) simulation, due to dimensional reduction in beam theory, the actual structural surface is not available which results in non-matching discrete geometries of the FSI interface. A linearised and a co-rotating algorithms applying the corresponding beam kinematics are proposed in another work to map deformation and load between the 1D beam mesh and the 2D surface mesh. In this work, the convergence behaviour of both algorithms is assessed with analytically described deformation. Besides, efficient treatments for both structured and unstructured fluid wet-surface meshes as well as treatment for connected beams are introduced as a practical extension to the core algorithm. Moreover, mapping is applied in the FSI simulation of a wind turbine where the rotor blades are modelled by beam elements.

Downloads

Download data is not yet available.

References

Ahrem, R., Beckert,A.,&Wendland, H. (2007). Recovering rotations in aeroelasticity. Journal

of Fluids and Structures, 23, 874–884.

Bathe, K.-J., & Bolourchi, S. (1979). Large displacement analysis of three-dimensional beam

structures. International Journal for Numerical Methods in Engineering, 14, 961–986.

Bazilevs, Y., Takizawa, K., & Tezduyar, T. E. (2013a). Challenges and directions in

computational fluid–structure interaction. Mathematical Models and Methods in Applied

Sciences, 23, 215–221.

Bazilevs, Y., Takizawa, K., & Tezduyar, T. E. (2013b). Computational fluid–structure

interaction: Methods and applications. Wiley.

Beckert, A., & Wendland, H. (2001). Multivariate interpolation for fluid–structure–

interaction problems using radial basis functions. Aerospace Science and Technology,

, 125–134.

Belver, A. V., Foces Mediavilla, A., Lorenzana Iban, A., & Rossi, R. (2010). Fluid–structure

coupling analysis and simulation of a slender composite beam. Science and Engineering of

Composite Materials, 17, 47–77.

Bernardi, C., Maday, Y., & Patera, A. T. (1994). A new nonconforming approach to domain

decomposition: The mortar element method. Nonlinear Partial Differential Equations and

Their Applications.

Blasques, J. P. A. A., Bitsche, R., Fedorov, V., & Eder, M. A. (2013). Applications of the

beam cross section analysis software (becas). In Proceedings of the 26th Nordic Seminar on

Computational Mechanics, (pp. 46–49).

Blom, F. J. (1998). A monolithical fluid–structure interaction algorithm applied to the piston

problem. Computer Methods in Applied Mechanics and Engineering, 167, 369–391.

Bottasso, C., Campagnolo, F., Croce, A., & Tibaldi, C. (2013). Optimization-based study of

bend-twist coupled rotor blades for passive and integrated passive/active load alleviation.

Wind Energy, 16, 1149–1166.

Chen, H., Yu, W., & Capellaro, M. (2010). A critical assessment of computer tools for

calculating composite wind turbine blade properties. Wind Energy, 13, 497–516.

Cordero-Gracia, M., Gómez, M., & Valero, E. (2014). A radial basis function algorithm for

simplified fluid–structure data transfer. International Journal for Numerical Methods in

Engineering, 99, 888–905.

de Boer, A., van Zuijlen, A. H., & Bijl, H. (2008). Comparison of conservative and consistent

approaches for the coupling of non-matching meshes. Computer Methods in Applied

Mechanics and Engineering, 197, 4284–4297.

De Hart, J., Peters, G., Schreurs, P., & Baaijens, F. (2003). A three-dimensional computational

analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 36, 103–

De Rosis, A., Falcucci, G., Ubertini, S., & Ubertini, F. (2013). A coupled lattice boltzmannfinite

element approach for two-dimensional fluid–structure interaction. Computers &

Fluids, 86, 558–568.

Degroote, J., Bruggeman, P., Haelterman, R., & Vierendeels, J. (2008). Stability of a coupling

technique for partitioned solvers in FSI applications. Computers & Structures, 86, 2224–

Donea, J., Huerta, A., Ponthot, J.-P., & Rodriguez-Ferran, A. (2004). Encyclopedia of

computationalmechanics, Vol. 1: Fundamentals,Chapter 14: Arbitrary Lagrangian–Eulerian

methods.

Farhat, C., Van der Zee, K. G., & Geuzaine, P. (2006). Provably second-order time-accurate

loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity.

Computer Methods in Applied Mechanics and Engineering, 195, 1973–2001.

Felippa, C., & Haugen, B. (2005). A unified formulation of small-strain corotational finite

elements: I. Theory. Computer Methods in Applied Mechanics and Engineering, 194, 2285–

Felippa, C., Park, K., & Ross, M. (2010). A classification of interface treatments for FSI, in:

Fluid Structure Interaction II. Springer. (pp. 27–51).

Fernández, M. Á., & Moubachir, M. (2005). A newton method using exact jacobians for

solving fluid–structure coupling. Computers & Structures, 83, 127–142.

Gerstenberger, A., & Wall, W. A. (2008). Enhancement of fixed-grid methods towards

complex fluid–structure interaction applications. International Journal for Numerical

Methods in Fluids, 57, 1227–1248.

Hand, M., Simms, D., Fingersh, L., Jager, D., Cotrell, J., Schreck, S., & Larwood, S. (2001).

Unsteady aerodynamics experiment phaseVI:Windtunnel test configurations and available

data campaigns. NREL/TP-500-29955.

Hansen, M. O. L., Sørensen, J. N., Voutsinas, S., Sørensen, N., & Madsen, H. A. (2006). State

of the art in wind turbine aerodynamics and aeroelasticity. Progress in Aerospace Sciences,

, 285–330.

Hirt, C., Amsden, A. A., & Cook, J. (1974). An arbitrary Lagrangian–Eulerian computing

method for all flow speeds. Journal of Computational Physics, 14, 227–253.

Holmes, J. D. (2015). Wind loading of structures. CRC Press.

Hou, G.,Wang, J., & Layton, A. (2012). Numerical methods for fluid–structure interaction –

A review. Communications in Computational Physics, 12, 337–377.

Hsu, M.-C., & Bazilevs, Y. (2012). Fluid–structure interaction modeling of wind turbines:

Simulating the full machine. Computational Mechanics, 50, 821–833.

Jaiman, R., Jiao, X., Geubelle, P., & Loth, E. (2006). Conservative load transfer along curved

fluid-solid interface with non-matching meshes. Journal of Computational Physics, 218,

–397.

Kindmann, R., & Kraus, M. (2004). Steel structures: Design using FEM. Ernst & Sohn.

Klöppel, T., Popp, A., Küttler, U., &Wall, W. A. (2011). Fluid-structure interaction for nonconforming

interfaces based on a dual mortar formulation. Computer Methods in Applied

Mechanics and Engineering, 200, 3111–3126.

Krenk, S. (2009). Non-linear modeling and analysis of solids and structures. Cambridge

University Press.

Küttler, U., & Wall, W. A. (2009). Vector extrapolation for strong coupling fluid–structure

interaction solvers. Journal of Applied Mechanics, 76, 21–205.

Li, Z., & Vu-Quoc, L. (2010). A mixed co-rotational 3D beam element formulation for

arbitrarily large rotations. Advanced Steel Construction, 6, 767–787.

Malcolm, D. J., & Laird, D. L. (2007). Extraction of equivalent beam properties from blade

models. Wind Energy, 10, 135–157.

Michler, C., Van Brummelen, E., & De Borst, R. (2005). An interface Newton–Krylov solver

for fluid-structure interaction. International Journal for Numerical Methods in Fluids, 47,

–1195.

Mittal, S., & Tezduyar, T. E. (1995). Parallel finite element simulation of 3D incompressible

flows: Fluid-structure interactions. International Journal for Numerical Methods in Fluids,

, 933–953.

Onate, E., Idelsohn, S. R., Celigueta, M. A., & Rossi, R. (2008). Advances in the particle finite

element method for the analysis of fluid-multibody interaction and bed erosion in free

surface flows. Computer Methods in Applied Mechanics and Engineering, 197, 1777–1800.

Patil, M. J., Hodges, D. H., & Cesnik, C. E. S. (2001). Nonlinear aeroelasticity and flight

dynamics of high-altitude long-endurance aircraft. Journal of Aircraft, 38, 88–94.

Peskin, C. S. (2002). The immersed boundary method. Acta Numerica, 11, 479–517.

Piperno, S., & Farhat, C. (2001). Partitioned procedures for the transient solution of coupled

aeroelastic problems-Part II: Energy transfer analysis and three-dimensional applications.

Computer Methods in Applied Mechanics and Engineering, 190, 3147–3170.

Press, W., Teukolsky, S., Vetterline, W., & Flannery, B. P. (2007). Numerical recipes 3rd

edition: The art of scientific computing. Cambridge University Press.

Puso, M. A. (2004). A 3D mortar method for solid mechanics. International Journal for

Numerical Methods in Engineering, 59, 315–336.

Puso,M. A.,&Laursen, T. A. (2004).Amortar segment-to-segment frictional contactmethod

for large deformations. Computer Methods in Applied Mechanics and Engineering, 193,

–4913.

Rabczuk, T., Gracie, R., Song, J.-H., & Belytschko, T. (2010). Immersed particle method for

fluid–structure interaction. International Journal for Numerical Methods in Engineering,

, 48.

Ryzhakov, P., Rossi, R., Idelsohn, S. R., & Oñate, E. (2010). Amonolithic lagrangian approach

for fluid–structure interaction problems. Computational Mechanics, 46, 883–899.

Sicklinger, S. (2014). Stabilized co-simulation of coupled problems including fields and signals

(Ph.D. thesis). Technische Universität München.

Sicklinger, S., Lerch, C.,Wüchner, R., & Bletzinger, K.-U. (2015). Fully coupled co-simulation

of a wind turbine emergency brake maneuver. Journal of Wind Engineering and Industrial

Aerodynamics, 144, 134–145.

Simiu, E., & Scanlan, R. H. (1996). Wind effects on structures. Wiley.

Smith,M. J.,Cesnik,C. E.,&Hodges,D.H. (2000). Evaluation of some data transfer algorithms

for noncontiguous meshes. Journal of Aerospace Engineering, 13, 52–58.

Streiner, S. (2011). Beitrag zur numerischen Simulation der Aerodynamik und Aeroelastik

großer Windkraftanlagen mit horizontaler Achse. Verlag Dr. Hut.

Tezduyar, T., Behr, M., & Liou, J. (1992a). A new strategy for finite element computations

involving moving boundaries and interfaces-the deforming-spatial-domain/space-time

procedure: I. The concept and the preliminary numerical tests. Computer Methods in

Applied Mechanics and Engineering, 94, 339–351.

Tezduyar, T., Behr, M., Mittal, S., & Liou, J. (1992b). A new strategy for finite

element computations involving moving boundaries and interfaces-the deforming-spatialdomain/

space-time procedure: II. Computation of free-surface flows, two-liquid flows, and

flows with drifting cylinders. Computer Methods in AppliedMechanics and Engineering, 94,

–371.

Unger, R., Haupt, M. C., &Horst, P. (2007). Application of lagrange multipliers for coupled

problems in fluid and structural interactions. Computers & structures, 85, 796–809.

Varello, A., Demasi, L., Carrera, E., & Giunta, G. (2010). An improved beam formulation

for aeroelastic applications. In Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference, (pp. 12–15).

Wang, H., Chessa, J., Liu, W. K., & Belytschko, T. (2008). The immersed/fictitious element

method for fluid–structure interaction: Volumetric consistency, compressibility and thin

members. International Journal for Numerical Methods in Engineering, 74, 32–55.

Wang, T., Wüchner, R., Sicklinger, S., & Bletzinger, K.-U. (2016). Assessment and

improvement of mapping algorithms for non-matching meshes and geometries in

computational FSI. Computational Mechanics, 57, 793–816.

Wohlmuth, B. I. (2000). A mortar finite element method using dual spaces for the lagrange

multiplier. SIAM Journal on Numerical Analysis, 38, 989–1012.

Wunderlich,W., & Kiener, G. (2004). Statik der Stabtragwerke. Vieweg+Teubner Verlag.

Zhu, L., & Peskin, C. S. (2002). Simulation of a flapping flexible filament in a flowing soap

film by the immersed boundary method. Journal of Computational Physics, 179, 452–468.

Downloads

Published

2016-09-01

How to Cite

Wang, T., Wüchner, R., & Bletzinger, K.-U. (2016). Assessment and practical application of mapping algorithms for beam elements in computational FSI. European Journal of Computational Mechanics, 25(5), 417–445. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/684

Issue

Section

Original Article

Most read articles by the same author(s)