Numerical analysis of a SUSHI scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media
DOI:
https://doi.org/10.13052/ejcm2642-2085.2855Keywords:
Porous media, nonconforming grids, finite volume schemes, SUSHI, convergence analysisAbstract
In this paper, we prove the convergence of a schema using stabilisation and hybrid interfaces of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations:
an anisotropic diffusion equation on the pressure and a convection-diffusion dispersion equation on the concentration of invading fluid. The anisotropic
diffusion operators in both equations require special care while discretizing by
a finite volume method SUSHI. Later, we present some numerical experiments.
Downloads
References
M. Rhoudaf, M. Mandari and O. Soualhi, The generalized finite volume
SUSHI scheme for the discretisation of the peaceman model, (submitted)
J. Douglas, J. R., The numerical simulation of miscible displacement,
in Computational methods in nonlinear mechanics, (J. T. Oden, ED.),
North Holland, Amsterdam, 1980.
J. Bear, Dynamics of fluids in porous media, American Elsevier, 1972.
J. Bear, A. Verruijt, Modelling Groundwater Flow and Pollution, 1987.
D. Reidel Publishing Company, Dordecht, Holland, 1995, pp. 473–
J. Douglas, Jr., R. E. Ewing and M. F. Wheeler, Approximation of the
pressure by a mixed method in the simulation of miscible displacement.
R.A.I.R Anal. Numer., 17(1983), 17–33.
P. H. Sammon, Numerical approximation for a miscible displacement in
porous media. SIAM J. Numer. Anal. 23(1986), 505–542.
J. Douglas, Jr., Numerical methods for the flow of miscible fluids in
porous media, in Numerical methods in coupled system, (R.W. Lewis,
P. Bettess, and E. Hinton, Eds.), Wiley, New York, 1984.
J. Douglas, J. R. and J. E. Roberts, Numerical methods for model
of compressible miscible displacement in porous media. Math. Comp.
(1983), 441–459.
X. Feng, On existence and uniqueness results for a coupled system
modeling miscible displacement in porous media. J. Math. Anal. Appl.,
(3):883–910, 1995.
C. Chainais-Hillairet, S. Krell and A. Mouton, Convergence analysis of
a DDFV scheme for a system describing miscible fluid flows in porous
media. Numerical Methods for Partial Differential Equations, Wiley,
, pp. 38.
C. Chainais-Hillairet, S. Krell and A. Mouton, Study of discrete duality
finite volume schemes for the peaceman model. SIAM J. Sci. Comput.,
(6):A2928–A2952, 2013.
C. Chainais-Hillairet and J. Droniou, Convergence analysis of a mixed
finite volume scheme for an elliptic-parabolic system modeling miscible
fluid flows in porous media. SIAM J. Numer. Anal., 45(5):2228–2258
(electronic), 2007.
H. Hu, Y. Fu and J. Zhou, Numerical solution of a miscible displacement
problem with dispersion term using a two-grid mixed finite element
approach. Numer. Algor., 2019, 81(3), 879–914.
J. Jaffr´e and J. E. Roberts, Upstream weighting and mixed finite elements
in the simulation of miscible displacements. RAIRO Model. Math. Anal.
Numer., 19(3):443–460, 1985.
J. Douglas, R. E. Ewing and M. F. Wheeler, A time-discretization procedure
for a mixed finite element approximation of miscible displacement
in porous media. RAIRO Anal. Num., 17 (1983), 249–265.
S. Bartels, M. Jensen and R. Muller, Discontinuous Galerkin finite element
convergence for incompressible miscible displacement problems of
low regularity. SIAM J. Numer. Anal., 47(5):3720–3743, 2009.
R. E. Ewing, T. F. Russell and M. F. Wheeler, Simulation of miscible
displacement using mixed methods and a modified method of
characteristics. SPE, 12241:71–81, 1983.
R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis
of an approximation of miscible displacement in porous media by
mixed finite elements and a modified method of characteristics. Comput.
Methods Appl. Mech. Engrg., 47(1–2):73–92, 1984.
T. F. Russell, Finite elements with characteristics for two-component
incompressible miscible displacement. In Proceedings of 6th SPE symposium
on Reservoir Simulation, pages 123–135, New Orleans, 1982.
T. G. R. Eymard and R. Herbin, Discretization of heterogeneous and
anisotropic diffusion problems on general nonconforming meshes sushi:
A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal.,
no. 30, pp. 1009–1043, 2010.
K. Brenner, D. Hilhorst and Vu-Do Huy-Cuong, The Generalized Finite
Volume SUSHI Scheme for the Discretization of Richards Equation.
Vietnam Journal of Mathematics, 44(3):557–586, 2016.
T. Gallouet and J.-C. Latch, Compactness of discrete approximate solutions
to parabolic PDEs – application to a turbulence model. Comm. on
Pure and Applied Analysis, vol. 6, no. 11, p. 23712391, 2012.
R. Eymard, T. Gallouet and R. Herbin, A new finite volume scheme for
anisotropic diffusion problems on general grids: convergence analysis.
C. R., Math., Acad. Sci. Paris, vol. 344, no. 6, pp. 403–406, 2007.
D. Burkle and M. Ohlberger, Adaptive finite volume methods for displacement
problems in porous media. Comput. Visual. Sci., vol. 5,
pp. 95–106, 2002.
S. Kumar, A Mixed and Discontinuous Galerkin Finite Volume Element
Method for Incompressible Miscible Displacement Problems in
Porous Media. Numerical Methods for Partial Differential Equations,
vol. 28(4), pp. 1354–1381, 2012.
B. L. Darlow, R. E. Ewing and M. F. Wheeler, Mixed Finite Element
Method for Miscible Displacement Problems in Porous Media. Society
of Petroleum Engineers, doi:10.2118/10501-PA, 1984.
H.Wang, D. Liang, R. E. Ewing, S. L. Lyons and G. Qin, An approximation
to miscible fluid flows in porous media with point sources and sinks
by an Eulerian-Lagrangian localized adjoint method and mixed finite
element methods. SIAM J. Sci. Comput., 22(2):561–581 (electronic),
H. Wang, D. Liang, R. E. Ewing, S. L. Lyons and G. Qin, An improved
numerical simulator for different types of flows in porous media. Numer.
Methods Partial Differential Equations, 19(3):343–362, 2003.
R. Eymard, T. Gallouet and R. Herbin, Finite Volume Methods, appeared
in Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions eds.,
vol. 7, pp. 713–1020, 2003.
B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume
schemes for Leray-Lions type elliptic problems on general 2D-meshes.
Num. Meth. for PDEs, 23 (2007), 145–195.