Numerical analysis of a SUSHI scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media

Authors

  • Ouafa Soualhi Moulay Ismail University, Meknes, Morocco
  • Mohamed Mandari Moulay Ismail University, Meknes, Morocco
  • Mohamed Rhoudaf Moulay Ismail University, Meknes, Morocco

DOI:

https://doi.org/10.13052/ejcm2642-2085.2855

Keywords:

Porous media, nonconforming grids, finite volume schemes, SUSHI, convergence analysis

Abstract

In this paper, we prove the convergence of a schema using stabilisation and hybrid interfaces of partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations:
an anisotropic diffusion equation on the pressure and a convection-diffusion dispersion equation on the concentration of invading fluid. The anisotropic
diffusion operators in both equations require special care while discretizing by
a finite volume method SUSHI. Later, we present some numerical experiments.

Downloads

Download data is not yet available.

Author Biographies

Ouafa Soualhi, Moulay Ismail University, Meknes, Morocco

Ouafa Soualhi is a doctoral student at the University of Moulay Ismail in Meknes since 2016, she holds a MASTER degree in Applied Mathematics and Computer Science at the Faculty of Science and Technology Abdelmalek Essaidi in Tangier, She holds a mathematics license applied and engineering session 2012, at the faculty of sciences, Ibno Zohr, Agadir, and a baccalaureate in mathematical sciences A, session 2008 in Laayoune.

Mohamed Mandari, Moulay Ismail University, Meknes, Morocco

Mohamed Mandari is a doctoral student at the University of Moulay Ismail in Meknes since 2016, he holds a MASTER degree in Applied Mathematics and Computer Science at the Faculty of Science and Technology Abdelmalek Essaidi in Tangier, he holds a mathematics license applied and engineering session 2012, at the faculty of sciences, Ibno Zohr, Agadir, and a baccalaureate in mathematical sciences A, session 2008 in Ouarzazate.

Mohamed Rhoudaf, Moulay Ismail University, Meknes, Morocco

Mohamed Rhoudaf is full professor of mathematics in moulay ismail university, he has obtained his Ph.D in 2006 at Sidi Mohamed Ben Abdellah University and his HDR at abdelmalek essaadi university, His research activity covers the theoretical study of EDP and the numerical analysis of EDP. He has published more than 45 publications in international journals.

References

M. Rhoudaf, M. Mandari and O. Soualhi, The generalized finite volume

SUSHI scheme for the discretisation of the peaceman model, (submitted)

J. Douglas, J. R., The numerical simulation of miscible displacement,

in Computational methods in nonlinear mechanics, (J. T. Oden, ED.),

North Holland, Amsterdam, 1980.

J. Bear, Dynamics of fluids in porous media, American Elsevier, 1972.

J. Bear, A. Verruijt, Modelling Groundwater Flow and Pollution, 1987.

D. Reidel Publishing Company, Dordecht, Holland, 1995, pp. 473–

J. Douglas, Jr., R. E. Ewing and M. F. Wheeler, Approximation of the

pressure by a mixed method in the simulation of miscible displacement.

R.A.I.R Anal. Numer., 17(1983), 17–33.

P. H. Sammon, Numerical approximation for a miscible displacement in

porous media. SIAM J. Numer. Anal. 23(1986), 505–542.

J. Douglas, Jr., Numerical methods for the flow of miscible fluids in

porous media, in Numerical methods in coupled system, (R.W. Lewis,

P. Bettess, and E. Hinton, Eds.), Wiley, New York, 1984.

J. Douglas, J. R. and J. E. Roberts, Numerical methods for model

of compressible miscible displacement in porous media. Math. Comp.

(1983), 441–459.

X. Feng, On existence and uniqueness results for a coupled system

modeling miscible displacement in porous media. J. Math. Anal. Appl.,

(3):883–910, 1995.

C. Chainais-Hillairet, S. Krell and A. Mouton, Convergence analysis of

a DDFV scheme for a system describing miscible fluid flows in porous

media. Numerical Methods for Partial Differential Equations, Wiley,

, pp. 38.

C. Chainais-Hillairet, S. Krell and A. Mouton, Study of discrete duality

finite volume schemes for the peaceman model. SIAM J. Sci. Comput.,

(6):A2928–A2952, 2013.

C. Chainais-Hillairet and J. Droniou, Convergence analysis of a mixed

finite volume scheme for an elliptic-parabolic system modeling miscible

fluid flows in porous media. SIAM J. Numer. Anal., 45(5):2228–2258

(electronic), 2007.

H. Hu, Y. Fu and J. Zhou, Numerical solution of a miscible displacement

problem with dispersion term using a two-grid mixed finite element

approach. Numer. Algor., 2019, 81(3), 879–914.

J. Jaffr´e and J. E. Roberts, Upstream weighting and mixed finite elements

in the simulation of miscible displacements. RAIRO Model. Math. Anal.

Numer., 19(3):443–460, 1985.

J. Douglas, R. E. Ewing and M. F. Wheeler, A time-discretization procedure

for a mixed finite element approximation of miscible displacement

in porous media. RAIRO Anal. Num., 17 (1983), 249–265.

S. Bartels, M. Jensen and R. Muller, Discontinuous Galerkin finite element

convergence for incompressible miscible displacement problems of

low regularity. SIAM J. Numer. Anal., 47(5):3720–3743, 2009.

R. E. Ewing, T. F. Russell and M. F. Wheeler, Simulation of miscible

displacement using mixed methods and a modified method of

characteristics. SPE, 12241:71–81, 1983.

R. E. Ewing, T. F. Russell and M. F. Wheeler, Convergence analysis

of an approximation of miscible displacement in porous media by

mixed finite elements and a modified method of characteristics. Comput.

Methods Appl. Mech. Engrg., 47(1–2):73–92, 1984.

T. F. Russell, Finite elements with characteristics for two-component

incompressible miscible displacement. In Proceedings of 6th SPE symposium

on Reservoir Simulation, pages 123–135, New Orleans, 1982.

T. G. R. Eymard and R. Herbin, Discretization of heterogeneous and

anisotropic diffusion problems on general nonconforming meshes sushi:

A scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal.,

no. 30, pp. 1009–1043, 2010.

K. Brenner, D. Hilhorst and Vu-Do Huy-Cuong, The Generalized Finite

Volume SUSHI Scheme for the Discretization of Richards Equation.

Vietnam Journal of Mathematics, 44(3):557–586, 2016.

T. Gallouet and J.-C. Latch, Compactness of discrete approximate solutions

to parabolic PDEs – application to a turbulence model. Comm. on

Pure and Applied Analysis, vol. 6, no. 11, p. 23712391, 2012.

R. Eymard, T. Gallouet and R. Herbin, A new finite volume scheme for

anisotropic diffusion problems on general grids: convergence analysis.

C. R., Math., Acad. Sci. Paris, vol. 344, no. 6, pp. 403–406, 2007.

D. Burkle and M. Ohlberger, Adaptive finite volume methods for displacement

problems in porous media. Comput. Visual. Sci., vol. 5,

pp. 95–106, 2002.

S. Kumar, A Mixed and Discontinuous Galerkin Finite Volume Element

Method for Incompressible Miscible Displacement Problems in

Porous Media. Numerical Methods for Partial Differential Equations,

vol. 28(4), pp. 1354–1381, 2012.

B. L. Darlow, R. E. Ewing and M. F. Wheeler, Mixed Finite Element

Method for Miscible Displacement Problems in Porous Media. Society

of Petroleum Engineers, doi:10.2118/10501-PA, 1984.

H.Wang, D. Liang, R. E. Ewing, S. L. Lyons and G. Qin, An approximation

to miscible fluid flows in porous media with point sources and sinks

by an Eulerian-Lagrangian localized adjoint method and mixed finite

element methods. SIAM J. Sci. Comput., 22(2):561–581 (electronic),

H. Wang, D. Liang, R. E. Ewing, S. L. Lyons and G. Qin, An improved

numerical simulator for different types of flows in porous media. Numer.

Methods Partial Differential Equations, 19(3):343–362, 2003.

R. Eymard, T. Gallouet and R. Herbin, Finite Volume Methods, appeared

in Handbook of Numerical Analysis, P. G. Ciarlet and J. L. Lions eds.,

vol. 7, pp. 713–1020, 2003.

B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume

schemes for Leray-Lions type elliptic problems on general 2D-meshes.

Num. Meth. for PDEs, 23 (2007), 145–195.

Downloads

Published

2020-01-21

How to Cite

Soualhi, O., Mandari, M., & Rhoudaf, M. (2020). Numerical analysis of a SUSHI scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media. European Journal of Computational Mechanics, 28(5), 499–540. https://doi.org/10.13052/ejcm2642-2085.2855

Issue

Section

Original Article