On modelling three-dimensional elastodynamic wave propagation with boundary spectral element method

Authors

  • Fangxin Zou Department of Aeronautics, Imperial College London, South Kensington Campus, London, UK http://orcid.org/0000-0001-5416-9176
  • M H Aliabadi Department of Aeronautics, Imperial College London, South Kensington Campus, London, UK

Keywords:

boundary integral equation, wave propagation, spectral element method, Boundary element method, Lobatto element, Gauss–Legendre element, Chebyshev element

Abstract

In this paper, a boundary spectral element method (BSEM) for solving the problem of three-dimensional wave propagation is introduced. In the new formulation, elastodynamics of structures is computed by the Laplace transformed boundary element method (BEM), and boundaries of structures are discretised into high-order isoparametric spectral elements. Three types of spectral elements – Lobatto, Gauss–Legendre and Chebyshev elements – have been implemented. With a significantly higher computational efficiency than the conventional BEM, the BSEM provides a competitive alternative for modelling high-frequency wave propagation in engineering applications.

Downloads

Download data is not yet available.

References

Aliabadi, M. H. (2002). The boundary element method. Volume 2, applications in solids and

structures. Wiley: United Kingdom.

Aliabadi, M. H., Hall, W. S., & Hibbs, T. T. (1987). Exact singularity cancelling for the

potential kernel in the boundary element method. Communications in Applied

Numerical Methods, 3(2), 123–128.

F. ZOU AND M. H. ALIABADI

Benedetti, I., Aliabadi, M., & Davi, G. (2008). A fast 3D dual boundary element method

based on hierarchical matrices. International Journal of Solids and Structures, 45(7),

–2376.

Benedetti, I., & Aliabadi, M. H. (2010). A fast hierarchical dual boundary element method

for three-dimensional elastodynamic crack problems. International Journal for

Numerical Methods in Engineering, 84(9), 1038–1067.

Dauksher, W., & Emery, A. F. (1997). Accuracy in modeling the acoustic wave equation with

Chebyshev spectral finite elements. Finite Elements in Analysis and Design, 26(2), 115–128.

Dominguez, J. (1993). Boundary elements in dynamics: Wit Press. https://www.witpress.

com/books/978-1-85312-258-3

Durbin, F. (1974). Numerical inversion of Laplace transforms: An efficient improvement to

Dubner and Abate’s method. The Computer Journal, 17(4), 371–376.

Eringen, A. C., & Suhubi, E. S. (2013). Linear theory: Academic press. https://www.elsevier.

com/books/linear-theory/eringen/978-0-12-240602-7

Giurgiutiu, V. (2005). Tuned lamb wave excitation and detection with piezoelectric wafer

active sensors for structural health monitoring. Journal of Intelligent Material Systems

and Structures, 16(4), 291–305.

Gottlieb, D., & Orszag, S. A. (1977). Numerical analysis of spectral methods: Theory and

applications (Vol. 26). Siam. https://epubs.siam.org/doi/book/10.1137/1.9781611970425

Gottlieb, D., & Orszag, S. A. (1983). Numerical analysis of spectral methods: Theory and

applications: Society for industrial and applied mathematics. https://epubs.siam.org/doi/

book/10.1137/1.9781611970425

Ha, S., & Chang, F.-K. (2010). Optimizing a spectral element for modeling PZT-induced

lamb wave propagation in thin plates. Smart Materials and Structures, 19(1), 015015.

Haywood, J., Coverley, P., Staszewski, W. J., & Worden, K. (2004). An automatic impact

monitor for a composite panel employing smart sensor technology. Smart Materials and

Structures, 14(1), 265.

Ihn, J.-B., & Chang, F.-K. (2004). Detection and monitoring of hidden fatigue crack growth

using a built-in piezoelectric sensor/actuator network: I. diagnostics. Smart Materials

and Structures, 13(3), 609.

Kim, Y., Ha, S., & Chang, F.-K. (2008). Time-domain spectral element method for built-in

piezoelectric-actuator-induced lamb wave propagation analysis. AIAA Journal, 46(3), 591–

Komatitsch, D., Barnes, C., & Tromp, J. (2000). Simulation of anisotropic wave propagation

based upon a spectral element method. Geophysics, 65(4), 1251–1260.

Komatitsch, D., & Tromp, J. (1999). Introduction to the spectral element method for threedimensional

seismic wave propagation. Geophysical Journal International, 139(3), 806–822.

Komatitsch, D., & Tromp, J. (2002). Spectral-element simulations of global seismic wave

propagation—I. Validation. Geophysical Journal International, 149(2), 390–412.

Komatitsch, D., & Vilotte, J.-P. (1998). The spectral element method: An efficient tool to

simulate the seismic response of 2D and 3D geological structures. Bulletin of the

Seismological Society of America, 88(2), 368–392.

Lachat, J., & Watson, J. (1976). Effective numerical treatment of boundary integral

equations: A formulation for three-dimensional elastostatics. International Journal for

Numerical Methods in Engineering, 10(5), 991–1005.

Mallardo, V., & Aliabadi, M. (2012). An adaptive fast multipole approach to 2D wave

propagation. Computer Modeling in Engineering and Sciences, 87(2), 77.

Mallardo, V., Aliabadi, M., & Khodaei, Z. S. (2013). Optimal sensor positioning for impact

localization in smart composite panels. Journal of Intelligent Material Systems and

Structures, 24(5), 559–573.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 225

Mallardo, V., Sharif Khodaei, Z., & Aliabadi, F. M. (2016). A Bayesian approach for sensor

optimisation in impact identification. Materials, 9(11), 946.

Muldowney, G., & Higdon, J. (1995). A spectral boundary element approach to threedimensional

Stokes flow. Journal of Fluid Mechanics, 298, 167–192.

Occhialini, J., Muldowney, G., & Higdon, J. (1992). Boundary integral/spectral element

approaches to the Navier–Stokes equations. International Journal for Numerical

Methods in Fluids, 15(12), 1361–1381.

Patera, A. T. (1984). A spectral element method for fluid dynamics: Laminar flow in a

channel expansion. Journal of Computational Physics, 54(3), 468–488.

Peng, H., Meng, G., & Li, F. (2009). Modeling of wave propagation in plate structures

using three-dimensional spectral element method for damage detection. Journal of

Sound and Vibration, 320(4), 942–954.

Rigby, R. (1995). Boundary element analysis of cracks in aerospace structures. PhD Thesis,

Wessex Institute of Technology, University of Portsmouth.[Links].

Sharif-Khodaei, Z., & Aliabadi, M. H. (2014). Assessment of delay-and-sum algorithms for

damage detection in aluminium and composite plates. Smart Materials and Structures, 23

(7), 075007.

Shen, L., & Liu, Y. (2007). An adaptive fast multipole boundary element method for threedimensional

acoustic wave problems based on the Burton–Miller formulation.

Computational Mechanics, 40(3), 461–472.

Wen, P. H., Aliabadi, M. H., & Rooke, D. P. (1998). Cracks in three dimensions: A

dynamic dual boundary element analysis. Computer Methods in Applied Mechanics

and Engineering, 167(1), 139–151.

Worden, K., & Staszewski, W. (2000). Impact location and quantification on a composite

panel using neural networks and a genetic algorithm. Strain, 36(2), 61–68.

Żak, A. (2009). A novel formulation of a spectral plate element for wave propagation in

isotropic structures. Finite Elements in Analysis and Design, 45(10), 650–658.

Zhao, X. (2004). An efficient approach for the numerical inversion of Laplace transform

and its application in dynamic fracture analysis of a piezoelectric laminate. International

Journal of Solids and Structures, 41(13), 3653–3674.

Zienkiewicz, O. C., & Taylor, R. L. (2000). The finite element method: Solid mechanics (Vol.

. Butterworth-heinemann. https://www.amazon.com/Finite-Element-Method-Solid-

Mechanics/dp/0470395052

Zou, F., & Aliabadi, M. (2017). On modelling three-dimensional piezoelectric smart structures

with boundary spectral element method. Smart Materials and Structures, 26(5), 055015.

Zou, F., & Aliabadi, M. H. (2015). A boundary element method for detection of damages

and self-diagnosis of transducers using electro-mechanical impedance. Smart Materials

and Structures, 24, 9.

Zou, F., Benedetti, I., & Aliabadi, M. H. (2014). A boundary element model for structural

health monitoring using piezoelectric transducers. Smart Materials and Structures, 23

(1), 015022.

Downloads

Published

2018-06-01

How to Cite

Zou, F., & Aliabadi, M. H. (2018). On modelling three-dimensional elastodynamic wave propagation with boundary spectral element method. European Journal of Computational Mechanics, 27(3), 204–228. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/781

Issue

Section

Original Article