A high fidelity cost efficient tensorial method based on combined POD-HOSVD reduced order model of flow field
DOI:
https://doi.org/10.13052/17797179.2018.1550963Keywords:
Proper orthogonal decomposition, HOSVD, compressible flow, reduced order model, fast data estimationAbstract
Computation time and data storage is a significant challenge in every calculation process. Increasing computational speed by upgrading hardware and the introduction of new software are some of the techniques to overcome this challenge. One of the most interesting methods for fast computations is the reduced order frameworks. In this study, the aerodynamic coefficients of the NACA0012 airfoil in subsonic and supersonic flows have been reconstructed and estimated by a cost-efficient form of combined proper orthogonal decomposition–high-order singular value decomposition (POD-HOSVD) scheme. The initial data ensemble contains some members related to the variations of the angle of attack and Mach number. To reduce the computation time, the structure of the standard combined POD-HOSVD approach has been changed to a cost-efficient format. The present method is a grid independent formulation of standard combined POD-HOSVD for the fields with a large number of elements and several effective variables. Results indicate more than 90 percent reduction in the calculation time compares with computational fluid dynamics and standard combined POD-HOSVD methods for a subsonic flow field.
Downloads
References
Bergmann, M., & Cordier, L. (2008). Optimal control of the cylinder wake in the laminar
regime by trust-region methods and POD reduced order models. Journal of
Computational Physics, 227(16), 7813–7840.
Berkant, S., & Lars, E. (2006, August). Handwritten digit classification using higher-order
singular value decomposition. Journal of Pattern Recognition, 40(3), 993–1003.
M. K. MOAYYEDI AND M. NAJAFBEYGI
Bourguet, R., Braza, M., & Dervieux, A. (2011). Reduced-order modeling of transonic flows
around an airfoil submitted to small deformations. Journal of Computational Physics, 230,
–184.
Bui-Thanh, T., Damodaran, M., & Willcox, K. E. (2004, August). Aerodynamic data
reconstruction and inverse design using proper orthogonal decomposition. AIAA
Journal, 42 1505–1516
Chambes, D. H., Adrian, R. J., Moin, P., Stewart, D. S., & Sung, H. J. (1988). Karhunen-
Loeve expansion of Burger’s model of turbulence. Physics of Fluids, 31, 2573–2582.
Connell, R. J., Kulasiri, D., Lennon, J., & Hill, D. F. (2007). Computational modeling of
turbulent velocity structures for an open channel flow using karhunen-loéve expansion.
International Journal of Computational Methods, 4(3), 493–519. doi:10.1142/
S0219876207001242
Dowell, E., Hall, K., Thomas, J., Florea, R., Epureanu, B., & Hegg, J. (1999). Reduced order
models in unsteady aerodynamics (AIAA Paper 99-1261).
Dutta, V. (1993). An implicit finite volume nodal point scheme for the solution of two-dimensional
compressible Navier–Stokes equations. Bangalore, India: National Aerospace
Laboratories.
Holmes, P., Lumley, J. L., & Berkooz, G. (1996). Turbulence coherent structures, dynamical
systems and symmetry. Cambridge, UK: Cambridge University Press.
Karhunen, K. (1946). Zur spektraltheorie stochastischer prozesse. Annales Academiae
Scientiarum Fennicae, Series A. 1, Mathematica-physica.
Lathauwer, L. D., Moor, B. D., & Vandewalle, J. (2000, April). A multilinear singular value
decomposition. SIAM Journal on Matrix Analysis and Applications, 21(4), 1253–1278.
Leschziner, M. A., Fishpool, G. M., & Lardeau, S. (2009). Turbulent shear flow:
A paradigmatic multiscale phenomenon. Journal of Multiscale Modelling, 1(2), 197–222.
Lieu, T., & Farhat, C. (2005, December). Adaptation of POD-based aeroelastic ROMs for
varying Mach number and angle of attack: Application to a complete F16 configuration. U.
S. Air Force T&E Days, U.S. Air Force T&E Days Conferences.
Lorente, L. S., Vega, J. M., & Velazquez, A. (2008, September–October). Generation of
aerodynamic databases using high-order singular value decomposition. Journal of
Aircraft, 45(5), 1779–1788.
Lucia, D. J. (2001). Reduce order modeling for high speed flows with moving shocks (Ph.D.
Thesis). Department of the Air Force, Air university.
Lumley, J. L. (1967). The structure of inhomogeneous turbulence. In A. M. Yaglom &
V. I. Tatarski (Eds.), Atmospheric turbulence and wave propagation (pp. 166–178). Nauka,
Moscow.
Martin, H., Roemer, F., & Del Galdo, G. (2008). Higher-order SVD-based subspace
estimation to improve the parameter estimation accuracy in multidimensional harmonic
retrieval problems. IEEE Transactions on Signal Processing, 56(7), 3198–3213.
doi:10.1109/TSP.2008.917929
Moayyedi, M. K., Najafi, M. R., & Najafbeygi, M. (2014, December). A low-dimensional
POD-HOSVD model for free vibration simulation of linear beam under variations of
several parameters. The 4th Conference on Acoustics and Vibration. Tehran: Iran
University of Science and Technology.
Moayyedi, M. K., Sabour, M. H., Najafbeygi, M., & Hojaji, M. (2013). Development of a
reduced-order model for flow field estimation based on the proper orthogonal
decomposition. FD2013 Conference. Hormozghan University.
Najafbeygi, M., Sabour, M. H., Moayyedi, M. K., & Hojaji, M. (2014, March). Flow field
estimation due to several parameters variations based on combined POD/HOSVD
reduced-order model, 13th Conference of Iranian Aerospace Society. University of Tehran.
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 365
Romanousk, M. (1996). Reduced order unsteady aerodynamics and aeroelastic models using
Karhunen-Loeve eigenmodes (AIAA, Paper 96-3981).
Sharma, A. S. (2009). Model reduction of turbulent fluid flows using the supply rate.
International Journal of Bifurcation and Chaos, 19(4), 1267–1278.
Sirovich, L., & Kirby, M. (1987). Low-dimensional procedure for the characterization of
human faces. Journal of the Optical Society of America, 4(3), 519–524.
Ştefănescu, R., Sandu, A., & Navon, I. M. (2014). Comparison of POD reduced order
strategies for the nonlinear 2D shallow water equations. International Journal for
Numerical Methods in Fluids, 76, 497–521.