A new solution technique for cathodic protection systems with homogeneous region by the boundary element method

Authors

DOI:

https://doi.org/10.13052/17797179.2018.1439138

Keywords:

Axisymmetric problem, nonlinear boundary conditions, subregions, three-dimensional problem

Abstract

The purpose of this work is to efficiently evaluate the design of cathodic protection (CP) systems of tank bottoms using concentric ring or linear anodes. As customary in current CP systems, the outer surface of the tank bottom is usually in electrical contact with a slender homogeneous layer of conductive concrete (or something similar) which in turn is in direct contact with the homogeneous deep soil region. The boundary element method (BEM) together with a subregion technique has been widely adopted to analyse such CP systems where the domain consists of two (or even more) homogeneous zones. However, the numerical solution of the final matrix system of equations can be quite time-consuming, especially if the slender intermediate layer is to be discretised, requiring a considerable number of elements, due to its somewhat reduced thickness. To overcome this problem, the present work proposes a new methodology in which the slender subregion is indirectly introduced, as a theoretically created polarisation curve, acting as a new boundary condition at the boundary of the soil domain (original common interface). Numerical simulations have been carried out using BEM implementations and results are discussed, including CP studies of practical axisymmetric and three-dimensional engineering problems.

Downloads

Download data is not yet available.

References

Abromowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions. New York,

NY: Dover.

Azevedo, J. P. S., & Wrobel, L. C. (1988). Nonlinear heat conduction in composite

bodies: A boundary element formulation. International Journal for Numerical Methods

in Engineering, 26, 19–38. doi:10.1002/nme.1620260103

BEASY (2000). BEASY user guide. Southampton: Computational Mechanics BEASY Ltd.

Brasil, S. L. D. C., Telles, J. C. F., & Miranda, L. R. M. (1991). On the effect of some critical

parameters in cathodic protection systems: A numerical/experimental study. In R. S. Munn

(Ed.), Computer Modeling in Corrosion, ASTM STP 1154 (pp. 277–291). Philadelphia, PA:

American Society for Testing and Materials. doi:10.1520/STP24703S

Brebbia, C. A., & Dominguez, J. (1989). Boundary elements: An introductory course.

Southampton: Computational Mechanics Publications.

Brebbia, C. A., Telles, J. C. F., & Wrobel, L. C. (1984). Boundary element techniques: Theory

and applications in engineering. Berlin: Springer-Verlag.

Brebbia, C. A., & Walker, S. (1980). Boundary element techniques in engineering. London:

Butter-worths.

Fontana, M. G., & Greene, N. D. (1967). Corrosion engineering. New York, NY: McGraw-Hill.

ISO/15589-1 (2015). Petroleum, petrochemical and natural gas industries –Cathodic protection

of pipeline systems. Part 1, On-land pipelines.

Kim, Y. S., Kim, J., Choi, D., Lim, J. Y., & Kim, J. G. (2017). Optimizing the

sacrificial anode cathodic protection of the rail canal structure in seawater using the

boundary element method. Engineering Analysis with Boundary Elements, 77, 36–48.

doi:10.1016/j.enganabound.2017.01.003

Kita, E., & Kamiya, N. (1994). Subregion boundary element method. JSME

International Journal Series A, Mechanics and Material Engineering, 37, 366–372.

doi:10.1299/kikaia.59.415

Koszewski, L. (1999). Retrofitting asphalt storage tanks with an improved cathodic protection

system. Materials Performance, 38(6), 20–24.

Lu, X., & Wu, W. (2005). A new subregion boundary element technique based on the

domain decomposition method. Engineering Analysis with Boundary Elements, 29, 944–

doi:10.1016/j.enganabound.2005.08.001

Montoya, R., Aperador, W., & Bastidas, D. M. (2009). Influence of conductivity on cathodic

protection of reinforced alkali-activated slag mortar using the finite element method.

Corrosion Science, 51, 2857–2862. doi:10.1016/j.corsci.2009.08.020

Montoya, R., Gakvan, J. C., & Genesca, J. C. (2011). Using the right side of Poissons equation

to save on numerical calculations in FEM simulation of electrochemical systems. Corrosion

Science, 53, 1806–1812. doi:10.1016/j.corsci.2011.01.059

NACE/SP0169 (2007). Standard practice control of external corrosion on underground or

submerged metallic piping systems.

Parsa, M. H., Allahkaram, S. R., & Ghobadi, A. H. (2010). Simulation of cathodic protection

potential distributions on oil well casings. Journal of Petroleum Science and Engineering, 72,

–219. doi:10.1016/j.petrol.2010.03.020

Peabody, A. W. (2001). Peabody’s control of pipeline corrosion (2nd ed.). Houston, TX: NACE

International.

Riemer, D. P., & Orazem, M. E. (2010). A mathematical model for the cathodic protection of

tank bottoms. Corrosion Science, 47, 849–868. doi:10.1016/j.corsci.2004.07.018

Roberge, P. R. (1999). Handbook of corrosion engineering. New York, NY: McGraw-Hill.

Santiago, J. A. F., & Telles, J. C. F. (1997). On boundary elements for simulation of cathodic

protection systems with dynamic polarization curves. International Journal for Numerical

Methods in Engineering, 40, 2611–2622. doi:10.1002/(SICI)1097-0207

Santos, W. J., Santiago, J. A. F., & Telles, J. C. F. (2012). An application of genetic algorithms

and the method of fundamental solutions to simulate cathodic protection systems.

Computer Modeling in Engineering & Sciences, 87, 23–40. doi:10.3970/cmes.2012.087.023

Santos, W. J., Santiago, J. A. F., & Telles, J. C. F. (2014). Optimal positioning of anodes

and virtual sources in the design of cathodic protection systems using the method

of fundamental solutions. Engineering Analysis with Boundary Elements, 46, 67–74.

doi:10.1016/j.enganabound.2014.05.009

Santos, W. J., Santiago, J. A. F., & Telles, J. C. F. (2016). Using the Gaussian

function to simulate constant potential anodes in multiobjective optimization of

cathodic protection systems. Engineering Analysis with Boundary Elements, 73, 35–41.

doi:10.1016/j.enganabound.2016.08.014

Telles, J. C. F., Mansur, W. J., Wrobel, L. C., & Marinho, M. G. (1990). Numerical simulation

of a cathodically protected semisubmersible platform using PROCAT system. Corrosion,

, 513–518. doi:10.5006/1.3585141

US-EPA (1988). Title40 code of federal regulations, parts 280 and 281. September.

Downloads

Published

2018-12-01

How to Cite

Santos, W. J., Brasil, S. L. D. C., Santiago, J. A. F., & Telles, J. C. F. (2018). A new solution technique for cathodic protection systems with homogeneous region by the boundary element method. European Journal of Computational Mechanics, 27(5-6), 368–382. https://doi.org/10.13052/17797179.2018.1439138

Issue

Section

Original Article