A new solution technique for cathodic protection systems with homogeneous region by the boundary element method
DOI:
https://doi.org/10.13052/17797179.2018.1439138Keywords:
Axisymmetric problem, nonlinear boundary conditions, subregions, three-dimensional problemAbstract
The purpose of this work is to efficiently evaluate the design of cathodic protection (CP) systems of tank bottoms using concentric ring or linear anodes. As customary in current CP systems, the outer surface of the tank bottom is usually in electrical contact with a slender homogeneous layer of conductive concrete (or something similar) which in turn is in direct contact with the homogeneous deep soil region. The boundary element method (BEM) together with a subregion technique has been widely adopted to analyse such CP systems where the domain consists of two (or even more) homogeneous zones. However, the numerical solution of the final matrix system of equations can be quite time-consuming, especially if the slender intermediate layer is to be discretised, requiring a considerable number of elements, due to its somewhat reduced thickness. To overcome this problem, the present work proposes a new methodology in which the slender subregion is indirectly introduced, as a theoretically created polarisation curve, acting as a new boundary condition at the boundary of the soil domain (original common interface). Numerical simulations have been carried out using BEM implementations and results are discussed, including CP studies of practical axisymmetric and three-dimensional engineering problems.
Downloads
References
Abromowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions. New York,
NY: Dover.
Azevedo, J. P. S., & Wrobel, L. C. (1988). Nonlinear heat conduction in composite
bodies: A boundary element formulation. International Journal for Numerical Methods
in Engineering, 26, 19–38. doi:10.1002/nme.1620260103
BEASY (2000). BEASY user guide. Southampton: Computational Mechanics BEASY Ltd.
Brasil, S. L. D. C., Telles, J. C. F., & Miranda, L. R. M. (1991). On the effect of some critical
parameters in cathodic protection systems: A numerical/experimental study. In R. S. Munn
(Ed.), Computer Modeling in Corrosion, ASTM STP 1154 (pp. 277–291). Philadelphia, PA:
American Society for Testing and Materials. doi:10.1520/STP24703S
Brebbia, C. A., & Dominguez, J. (1989). Boundary elements: An introductory course.
Southampton: Computational Mechanics Publications.
Brebbia, C. A., Telles, J. C. F., & Wrobel, L. C. (1984). Boundary element techniques: Theory
and applications in engineering. Berlin: Springer-Verlag.
Brebbia, C. A., & Walker, S. (1980). Boundary element techniques in engineering. London:
Butter-worths.
Fontana, M. G., & Greene, N. D. (1967). Corrosion engineering. New York, NY: McGraw-Hill.
ISO/15589-1 (2015). Petroleum, petrochemical and natural gas industries –Cathodic protection
of pipeline systems. Part 1, On-land pipelines.
Kim, Y. S., Kim, J., Choi, D., Lim, J. Y., & Kim, J. G. (2017). Optimizing the
sacrificial anode cathodic protection of the rail canal structure in seawater using the
boundary element method. Engineering Analysis with Boundary Elements, 77, 36–48.
doi:10.1016/j.enganabound.2017.01.003
Kita, E., & Kamiya, N. (1994). Subregion boundary element method. JSME
International Journal Series A, Mechanics and Material Engineering, 37, 366–372.
doi:10.1299/kikaia.59.415
Koszewski, L. (1999). Retrofitting asphalt storage tanks with an improved cathodic protection
system. Materials Performance, 38(6), 20–24.
Lu, X., & Wu, W. (2005). A new subregion boundary element technique based on the
domain decomposition method. Engineering Analysis with Boundary Elements, 29, 944–
doi:10.1016/j.enganabound.2005.08.001
Montoya, R., Aperador, W., & Bastidas, D. M. (2009). Influence of conductivity on cathodic
protection of reinforced alkali-activated slag mortar using the finite element method.
Corrosion Science, 51, 2857–2862. doi:10.1016/j.corsci.2009.08.020
Montoya, R., Gakvan, J. C., & Genesca, J. C. (2011). Using the right side of Poissons equation
to save on numerical calculations in FEM simulation of electrochemical systems. Corrosion
Science, 53, 1806–1812. doi:10.1016/j.corsci.2011.01.059
NACE/SP0169 (2007). Standard practice control of external corrosion on underground or
submerged metallic piping systems.
Parsa, M. H., Allahkaram, S. R., & Ghobadi, A. H. (2010). Simulation of cathodic protection
potential distributions on oil well casings. Journal of Petroleum Science and Engineering, 72,
–219. doi:10.1016/j.petrol.2010.03.020
Peabody, A. W. (2001). Peabody’s control of pipeline corrosion (2nd ed.). Houston, TX: NACE
International.
Riemer, D. P., & Orazem, M. E. (2010). A mathematical model for the cathodic protection of
tank bottoms. Corrosion Science, 47, 849–868. doi:10.1016/j.corsci.2004.07.018
Roberge, P. R. (1999). Handbook of corrosion engineering. New York, NY: McGraw-Hill.
Santiago, J. A. F., & Telles, J. C. F. (1997). On boundary elements for simulation of cathodic
protection systems with dynamic polarization curves. International Journal for Numerical
Methods in Engineering, 40, 2611–2622. doi:10.1002/(SICI)1097-0207
Santos, W. J., Santiago, J. A. F., & Telles, J. C. F. (2012). An application of genetic algorithms
and the method of fundamental solutions to simulate cathodic protection systems.
Computer Modeling in Engineering & Sciences, 87, 23–40. doi:10.3970/cmes.2012.087.023
Santos, W. J., Santiago, J. A. F., & Telles, J. C. F. (2014). Optimal positioning of anodes
and virtual sources in the design of cathodic protection systems using the method
of fundamental solutions. Engineering Analysis with Boundary Elements, 46, 67–74.
doi:10.1016/j.enganabound.2014.05.009
Santos, W. J., Santiago, J. A. F., & Telles, J. C. F. (2016). Using the Gaussian
function to simulate constant potential anodes in multiobjective optimization of
cathodic protection systems. Engineering Analysis with Boundary Elements, 73, 35–41.
doi:10.1016/j.enganabound.2016.08.014
Telles, J. C. F., Mansur, W. J., Wrobel, L. C., & Marinho, M. G. (1990). Numerical simulation
of a cathodically protected semisubmersible platform using PROCAT system. Corrosion,
, 513–518. doi:10.5006/1.3585141
US-EPA (1988). Title40 code of federal regulations, parts 280 and 281. September.