MFS fading regularization method for the identification of boundary conditions from partial elastic displacement field data

Authors

  • L. Caillé UNICAEN, CNRS, LMNO, Normandie Univ, Caen, France http://orcid.org/0000-0001-7325-2178
  • J L. Hanus Laboratoire de Mécanique Gabriel Lamé, INSA Centre Val de Loire, Université d’Orléans, Université de Tours, Bourges, France http://orcid.org/0000-0001-7325-2178
  • F. Delvare UNICAEN, CNRS, LMNO, Normandie Univ, Caen, France
  • N. Michaux-Leblonda UNICAEN, CNRS, LMNO, Normandie Univ, Caen, France

DOI:

https://doi.org/10.13052/17797179.2018.1560843

Keywords:

Inverse problems, regularization method, method of fundamental solutions, linear elasticity, partial full-field measurements

Abstract

A method is proposed to solve an inverse problem in twodimensional linear isotropic elasticity. The inverse problem consists of the determination of both the entire displacement field and the boundary conditions inaccessible to the measurement from the partial knowledge of the displacement field. The algorithm is based on a fading regularization method (FRM) and is numerically implemented using the method of fundamental solutions (MFS). The inverse technique is first validated with synthetic data and is then applied to the interpretation of experimental measurements obtained by digital image correlation (DIC).

Downloads

Download data is not yet available.

References

Andrieux, S., & Baranger, T. N. (2008). An energy error-based method for the resolution

of the Cauchy problem in 3D linear elasticity. Computer Methods in Applied Mechanics

and Engineering, 197(9), 902–920.

Arai, M., Nishida, T., & Adachi, T. (2000). Identification of dynamic pressure distribution

applied to the elastic thin plate. In M. Tanaka, & G. S. Dulikravich (Eds.), Inverse

problems in Engineering Mechanics II (Int sym inverse problems in eng mech 2000,

Nagano, Japan) (pp. 129–138) Elsevier Science Ltd. ISBN 9780080436937. doi: 10.1016/

B978-008043693-7/50086-6.

Baranger, T. N., & Andrieux, S. (2008). An optimization approach for the Cauchy problem

in linear elasticity. Structural and Multidisciplinary Optimization, 35(2), 141–152.

Berger, J. R., & Karageorghis, A. (2001). The method of fundamental solutions for layered

elastic materials. Engineering Analysis with Boundary Elements, 25(10), 877–886.

Burt, P. J., Yen, C., & Xu, X. (1982). Local correlation measures for motion analysis:

A comparative study. Proc. IEEE Conf. on Pattern Recognition and Image Processing (pp.

–274). Washington, DC.

Caillé, L., Delvare, F., Marin, L., & Michaux-Leblond, N. (2017). Fading regularization

MFS algorithm for the Cauchy problem associated with the two-dimensional Helmholtz

equation. International Journal of Solids and Structures, 125, 122–133.

Cimetière, A., Delvare, F., Jaoua, M., & Pons, F. (2001). Solution of the Cauchy problem

using iterated Tikhonov regularization. Inverse Problems, 17(3), 553.

Cimetière, A., Delvare, F., Jaoua, M., & Pons, F. (2002). An inversion method for harmonic

functions reconstruction. International Journal of Thermal Sciences, 41(6), 509–516.

Cimetière, A., Delvare, F., & Pons, F. (2000). Une méthode inverse à régularisation

évanescente [An inverse method with vanishing regularization]. Comptes Rendus De

l’Académie Des Sciences-Series IIB-Mechanics, 328(9), 639–644.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 537

Delvare, F., Cimetière, A., Hanus, J.-L., & Bailly, P. (2010). An iterative method for the

Cauchy problem in linear elasticity with fading regularization effect. Computer Methods

in Applied Mechanics and Engineering, 199(49), 3336–3344.

Delvare, F., Cimetière, A., & Pons, F. (2002). An iterative boundary element method for

Cauchy inverse problems. Computational Mechanics, 28(3–4), 291–302.

Dennis, B. H., Dulikravich, G. S., & Yoshimura, S. (2004). A finite element formulation for

the determination of unknown boundary conditions for three-dimensional steady

thermoelastic problems. Journal of Heat Transfer, 126(1), 110–118.

Durand, B., Delvare, F., & Bailly, P. (2011). Numerical solution of Cauchy problems in

linear elasticity in axisymmetric situations. International Journal of Solids and

Structures, 48(21), 3041–3053.

Grédiac, M., Hild, F., & Pineau, A. (Eds.) (2012). Full-field measurements and identification

in solid mechanics. London: ISTE; Hoboken, N.J.: Wiley. ISBN: 9781118578469. doi:

1002/9781118578469

Hadamard, J. (1923). Lectures on Cauchy’s problem in linear partial differential equations.

New Haven: Yale University Press.

Hild, F., & Roux, S. (2012). Comparison of local and global approaches to digital image

correlation. Experimental Mechanics, 52(9), 1503–1519.

Koya, T., Yeih, W., & Mura, T. (1993). An inverse problem in elasticity with partially

overprescribed boundary conditions, Part II: Numerical details. Journal of Applied

Mechanics, 60(3), 601–606.

Maniatty, A., Zabaras, N., & Stelson, K. (1989). Finite element analysis of some inverse

elasticity problems. Journal of Engineering Mechanics, 115(6), 1303–1317.

Marin, L., Delvare, F., & Cimetière, A. (2016). Fading regularization MFS algorithm for

inverse boundary value problems in two-dimensional linear elasticity. International

Journal of Solids and Structures, 78–79, 9–20.

Marin, L., Elliott, L., Ingham, D. B., & Lesnic, D. (2001). Boundary element method for the

Cauchy problem in linear elasticity. Engineering Analysis with Boundary Elements, 25(9),

–793.

Marin, L., Hào, D. N., & Lesnic, D. (2002). Conjugate gradient–Boundary element method

for the Cauchy problem in elasticity. The Quarterly Journal of Mechanics and Applied

Mathematics, 55(2), 227–247.

Marin, L., & Lesnic, D. (2002). Regularized boundary element solution for an inverse

boundary value problem in linear elasticity. Communications in Numerical Methods in

Engineering, 18(11), 817–825.

Marin, L., & Lesnic, D. (2003). BEM first-order regularisation method in linear elasticity

for boundary identification. Computer Methods in Applied Mechanics and Engineering,

(16), 2059–2071.

Marin, L., & Lesnic, D. (2004). The method of fundamental solutions for the Cauchy

problem in two-dimensional linear elasticity. International Journal of Solids and

Structures, 41(13), 3425–3438.

Marin, L., & Lesnic, D. (2005). Boundary element-Landweber method for the Cauchy

problem in linear elasticity. IMA Journal of Applied Mathematics, 70(2), 323–340.

Sutton, M. A., McNeill, S. R., Helm, J. D., & Chao, Y. J. (2000). Advances in twodimensional

and three-dimensional computer vision. In P. K. Rastogi (Ed.),

Photomechanics. Topics in Applied Physics, vol 77 (pp. 323–372). Heidelberg, Berlin:

Springer. doi: 10.1007/3-540-48800-6_10

Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image correlation for shape, motion and

deformation measurements: Basic concepts, theory and applications. New York, NY:

L. CAILLÉ ET AL.

Springer Science & Business Media. ISBN 978-0-387-78746-6. doi: 10.1007/978-0-387-

-3.

Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983).

Determination of displacements using an improved digital correlation method. Image

and Vision Computing, 1(3), 133–139.

Tikhonov, A. N., & Arsenin, V. Y. (1977). Solution of ill-posed problems. New York, NY:

John Wiley and Sons, Inc.; Washington, D.C: V. H. Winston & Sons.

Touchal, S., Morestin, F., & Brunet, M. (1996). Mesure de champs de déplacements et de

déformations par corrélation d’images numériques. In Cailletaud (Ed.), Proc. Actes du

Colloque National Mécamat’96 (pp. 179–182). Aussois.

Yeih, W., Koya, T., & Mura, T. (1993). An inverse problem in elasticity with partially

overprescribedboundary conditions, Part I: Theoretical approach. Journal of Applied

Mechanics, 60(3), 595–600.

Downloads

Published

2018-12-01

How to Cite

Caillé, L., Hanus, J. L., Delvare, F., & Michaux-Leblonda, N. (2018). MFS fading regularization method for the identification of boundary conditions from partial elastic displacement field data. European Journal of Computational Mechanics, 27(5-6), 508–539. https://doi.org/10.13052/17797179.2018.1560843

Issue

Section

Original Article