MFS fading regularization method for the identification of boundary conditions from partial elastic displacement field data
DOI:
https://doi.org/10.13052/17797179.2018.1560843Keywords:
Inverse problems, regularization method, method of fundamental solutions, linear elasticity, partial full-field measurementsAbstract
A method is proposed to solve an inverse problem in twodimensional linear isotropic elasticity. The inverse problem consists of the determination of both the entire displacement field and the boundary conditions inaccessible to the measurement from the partial knowledge of the displacement field. The algorithm is based on a fading regularization method (FRM) and is numerically implemented using the method of fundamental solutions (MFS). The inverse technique is first validated with synthetic data and is then applied to the interpretation of experimental measurements obtained by digital image correlation (DIC).
Downloads
References
Andrieux, S., & Baranger, T. N. (2008). An energy error-based method for the resolution
of the Cauchy problem in 3D linear elasticity. Computer Methods in Applied Mechanics
and Engineering, 197(9), 902–920.
Arai, M., Nishida, T., & Adachi, T. (2000). Identification of dynamic pressure distribution
applied to the elastic thin plate. In M. Tanaka, & G. S. Dulikravich (Eds.), Inverse
problems in Engineering Mechanics II (Int sym inverse problems in eng mech 2000,
Nagano, Japan) (pp. 129–138) Elsevier Science Ltd. ISBN 9780080436937. doi: 10.1016/
B978-008043693-7/50086-6.
Baranger, T. N., & Andrieux, S. (2008). An optimization approach for the Cauchy problem
in linear elasticity. Structural and Multidisciplinary Optimization, 35(2), 141–152.
Berger, J. R., & Karageorghis, A. (2001). The method of fundamental solutions for layered
elastic materials. Engineering Analysis with Boundary Elements, 25(10), 877–886.
Burt, P. J., Yen, C., & Xu, X. (1982). Local correlation measures for motion analysis:
A comparative study. Proc. IEEE Conf. on Pattern Recognition and Image Processing (pp.
–274). Washington, DC.
Caillé, L., Delvare, F., Marin, L., & Michaux-Leblond, N. (2017). Fading regularization
MFS algorithm for the Cauchy problem associated with the two-dimensional Helmholtz
equation. International Journal of Solids and Structures, 125, 122–133.
Cimetière, A., Delvare, F., Jaoua, M., & Pons, F. (2001). Solution of the Cauchy problem
using iterated Tikhonov regularization. Inverse Problems, 17(3), 553.
Cimetière, A., Delvare, F., Jaoua, M., & Pons, F. (2002). An inversion method for harmonic
functions reconstruction. International Journal of Thermal Sciences, 41(6), 509–516.
Cimetière, A., Delvare, F., & Pons, F. (2000). Une méthode inverse à régularisation
évanescente [An inverse method with vanishing regularization]. Comptes Rendus De
l’Académie Des Sciences-Series IIB-Mechanics, 328(9), 639–644.
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 537
Delvare, F., Cimetière, A., Hanus, J.-L., & Bailly, P. (2010). An iterative method for the
Cauchy problem in linear elasticity with fading regularization effect. Computer Methods
in Applied Mechanics and Engineering, 199(49), 3336–3344.
Delvare, F., Cimetière, A., & Pons, F. (2002). An iterative boundary element method for
Cauchy inverse problems. Computational Mechanics, 28(3–4), 291–302.
Dennis, B. H., Dulikravich, G. S., & Yoshimura, S. (2004). A finite element formulation for
the determination of unknown boundary conditions for three-dimensional steady
thermoelastic problems. Journal of Heat Transfer, 126(1), 110–118.
Durand, B., Delvare, F., & Bailly, P. (2011). Numerical solution of Cauchy problems in
linear elasticity in axisymmetric situations. International Journal of Solids and
Structures, 48(21), 3041–3053.
Grédiac, M., Hild, F., & Pineau, A. (Eds.) (2012). Full-field measurements and identification
in solid mechanics. London: ISTE; Hoboken, N.J.: Wiley. ISBN: 9781118578469. doi:
1002/9781118578469
Hadamard, J. (1923). Lectures on Cauchy’s problem in linear partial differential equations.
New Haven: Yale University Press.
Hild, F., & Roux, S. (2012). Comparison of local and global approaches to digital image
correlation. Experimental Mechanics, 52(9), 1503–1519.
Koya, T., Yeih, W., & Mura, T. (1993). An inverse problem in elasticity with partially
overprescribed boundary conditions, Part II: Numerical details. Journal of Applied
Mechanics, 60(3), 601–606.
Maniatty, A., Zabaras, N., & Stelson, K. (1989). Finite element analysis of some inverse
elasticity problems. Journal of Engineering Mechanics, 115(6), 1303–1317.
Marin, L., Delvare, F., & Cimetière, A. (2016). Fading regularization MFS algorithm for
inverse boundary value problems in two-dimensional linear elasticity. International
Journal of Solids and Structures, 78–79, 9–20.
Marin, L., Elliott, L., Ingham, D. B., & Lesnic, D. (2001). Boundary element method for the
Cauchy problem in linear elasticity. Engineering Analysis with Boundary Elements, 25(9),
–793.
Marin, L., Hào, D. N., & Lesnic, D. (2002). Conjugate gradient–Boundary element method
for the Cauchy problem in elasticity. The Quarterly Journal of Mechanics and Applied
Mathematics, 55(2), 227–247.
Marin, L., & Lesnic, D. (2002). Regularized boundary element solution for an inverse
boundary value problem in linear elasticity. Communications in Numerical Methods in
Engineering, 18(11), 817–825.
Marin, L., & Lesnic, D. (2003). BEM first-order regularisation method in linear elasticity
for boundary identification. Computer Methods in Applied Mechanics and Engineering,
(16), 2059–2071.
Marin, L., & Lesnic, D. (2004). The method of fundamental solutions for the Cauchy
problem in two-dimensional linear elasticity. International Journal of Solids and
Structures, 41(13), 3425–3438.
Marin, L., & Lesnic, D. (2005). Boundary element-Landweber method for the Cauchy
problem in linear elasticity. IMA Journal of Applied Mathematics, 70(2), 323–340.
Sutton, M. A., McNeill, S. R., Helm, J. D., & Chao, Y. J. (2000). Advances in twodimensional
and three-dimensional computer vision. In P. K. Rastogi (Ed.),
Photomechanics. Topics in Applied Physics, vol 77 (pp. 323–372). Heidelberg, Berlin:
Springer. doi: 10.1007/3-540-48800-6_10
Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image correlation for shape, motion and
deformation measurements: Basic concepts, theory and applications. New York, NY:
L. CAILLÉ ET AL.
Springer Science & Business Media. ISBN 978-0-387-78746-6. doi: 10.1007/978-0-387-
-3.
Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983).
Determination of displacements using an improved digital correlation method. Image
and Vision Computing, 1(3), 133–139.
Tikhonov, A. N., & Arsenin, V. Y. (1977). Solution of ill-posed problems. New York, NY:
John Wiley and Sons, Inc.; Washington, D.C: V. H. Winston & Sons.
Touchal, S., Morestin, F., & Brunet, M. (1996). Mesure de champs de déplacements et de
déformations par corrélation d’images numériques. In Cailletaud (Ed.), Proc. Actes du
Colloque National Mécamat’96 (pp. 179–182). Aussois.
Yeih, W., Koya, T., & Mura, T. (1993). An inverse problem in elasticity with partially
overprescribedboundary conditions, Part I: Theoretical approach. Journal of Applied
Mechanics, 60(3), 595–600.