Boundary element analysis of the frictionless indentation of piezoelectric films

Authors

  • Luis Rodríguez-Tembleque Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, Sevilla E-41092, Spain
  • Federico C. Buroni Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, Sevilla E-41092, Spain
  • Andrés Sáez Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, Sevilla E-41092, Spain

Keywords:

Piezoelectric, indentation, conducting electrical boundary condition, contact mechanics, boundary element method

Abstract

The boundary element method is used for studying frictionless indentation response of piezoelectric (PE) films under spherical indenter (i.e. sphere) and circular cylindrical indenter (i.e. punch). An augmented Lagrangian formulation is employed to solve PE films of finite thickness under contact conditions. The methodology is validated by comparison with theoretical solutions presented in the literature for the two limiting cases: infinitely thick and infinitely thin PE films closed-form solutions. Furthermore, the formulation is applied to compute the indentation response of those cases in between.

 

Downloads

Download data is not yet available.

References

Alart, P., & Curnier, A. (1991). A mixed formulation for frictional contact problems prone to

Newton like solution methods. Computer Methods in Applied Mechanics and Engineering,

, 353–375.

Aliabadi, M. H. (2002). The boundary element method, Applications in solids and structures

(Vol. 2). Chichester: JohnWiley & Sons.

Barboteu,M., Fernández, J.,&Ouafik, Y. (2008). Numerical analysis of two frictionless elasticpiezoelectric

contact problems. Journal of Mathematical Analysis and Applications, 339,

–917.

Blazquez, A.,Mantic, V.,&París, F. (2006). Application ofBEMto generalized plane problems

for anisotropic elastic materials in presence of contact. Engineering Analysis with Boundary

Elements, 30, 489–502.

Brebbia, C. A., & Dominguez, J. (1992). Boundary elements: An introductory course (2nd ed.).

Southampton: WIT Press.Buroni, F., & Sáez, A. (2010). Three-dimensional Green’s function and its derivative for

materials with general anisotropic magneto-electro-elastic coupling. Proceedings of the

Royal Society A, 466, 515–537.

Cady,W. (1946). Piezoelectricity. New York: McGraw-Hill.

Chen,W., & Ding, H. (1996). Indentation of a transversely isotropic piezoelectric half-space

by a rigid sphere. Acta Mechanica Solida Sinica, 12, 114–120.

Chen,W., Shioya, T., & Ding, H. (1999). The elastoelectric field for a rigid conical punch on

a transversely isotropic piezoelectric half-space. ASME Journal of Applied Mechanics, 66,

–771.

Christensen, P., Klarbring, A., Pang, J. S., & Strömberg, N. (1998). Formulation and

comparison of algorithms for frictional contact problems. International Journal for

Numerical Methods in Engineering, 42, 145–173.

Ding, H., & Chen, W. (2001). Three dimensional problems of piezoelasticity. NewYork: Nova

Science Publishers.

Ding, H., Hou, P., & Guo, F. (2000). The elastic and electric fields for three-dimensional

contact for transversely isotropic piezoelectricmaterials. International Journal of Solids and

Structures, 37, 3201–3229.

Fan, H., Sze, K., & Yang, W. (1996). Two-dimensional contact on a piezoelectric half-space.

International Journal of Solids and Structures, 33, 1305–1315.

Gao, C., & Noda, N. (2004). Green’s functions of a half-infinite piezoelectric body: Exact

solutions. Acta Mechanica, 172, 169–179.

Giannakopoulos, A., & Suresh, S. (1999). Theory of indentation of piezoelectric materials.

Acta Materialia, 47, 2153–2164.

Han, W., Sofonea, M., & Kazmi, K. (2007). Analysis and numerical solution of a frictionless

contact problem for electro-elastic-visco-plastic materials. Computer Methods in Applied

Mechanics and Engineering, 196, 3915–3926.

Hüeber, S., Matei, A.,& Wohlmuth, B. (2013). A contact problem for electro-elastic materials.

Zeitschrift für Angewandte Mathematik und Mechanik, 93, 789–800.

Ikeda, T. (1996). Fundamentals of piezoelectricity. Oxford: Oxford Science Publications.

Kalinin, S., Karapetian, E., & Kachanov, M. (2004). Nanoelectromechanics of piezoresponse

force microscopy. Physical Review B, 70, 184101-1–184101-24.

Kamble, S., Kubair, D., & Ramamurty, U. (2009). Indentation strength of a piezoelectric

ceramic: Experiments and simulations. Journal of Materials Research, 24, 925–934.

Ke, L. L., Yang, J., Kitipornchai, S., & Wang, Y. S. (2008). Electro-mechanical frictionless

contact behavior of a functionally graded piezoelectric layered half-space under a rigid

punch. International Journal of Solids and Structures, 45, 3313–3333.

Kikuchi,N.,&Oden, J. (1988). Contact problems in elasticity:Astudy of variational inequalities

and finite element methods. Philadelphia: SIAM.

Laursen, T. (2002). Computational contact and impactmechanics. BerlinHeidelberg: Springer.

Liu, M., & Fuqian, Y. (2012a). Electromechanical behaviour of a finite piezoelectric layer

under a flat punch. Smart Materials and Structures, 21, 105020(10pp).

Liu, M., & Fuqian, Y. (2012b). Finite element analysis of the spherical indentation of

transversely isotropic piezoelectricmaterials. Modelling and Simulation inMaterials Science

and Engineering, 20, 045019(15pp).

Liu, M., & Yang, F. (2013). Three-dimensional finite element simulation of the Berkovich

indentation of a transversely isotropic piezoelectric material: Effect of material orientation.

Modelling and Simulation in Materials Science and Engineering, 21, 045014 (14pp).

Mantiˇc, V. (1993). A new formula for the C-matrix in the Somigliana identity. Journal of

Elasticity, 33, 191–201.Mason, W. (1950). Piezoelectric crystals and their application to ultrasonics. New York: Van

Nostrand-Reinhold.

Matysiak, S. (1985). Indentation strength of a piezoelectric ceramic: Experiments and

simulations. Bulletin of the Polish Academy of Sciences, 33, 25–34.

Muralt, P. (2008). Recent progress in materials issues for piezoelectricMEMS. The American

Ceramic Society, 91, 1385–1396.

Pohanka, R., & Smith, P. (1988). Electronic ceramics, properties, devices and applications. New

York: Marcel Dekker.

Ramamurty, U., Sridhar, S., Giannakopoulos, A. E., & Suresh, S. (1999). An experimental

study of spherical indentation of piezoelectric materials. Acta Materialia, 47, 2417–2430.

Ramirez, G. (2006). Frictionless contact in a layered piezoelectric media characterized by

complex eigenvalues. Smart Materials and Structures, 15, 1287–1295.

Ramirez, G., & Heyliger, P. (2003). Frictionless contact in a layered piezoelectric half-space.

Smart Materials and Structures, 12, 612–625.

Rodríguez-Tembleque, L., Buroni, F. C., Abascal, R., & Sáez, A. (2011). 3D frictional contact

of anisotropic solids using BEM. European Journal of Mechanics A Solids, 30, 95–104.

Rodríguez-Tembleque, L., Buroni, F., & Sáez, A. (2015). 3D BEM for orthotropic frictional

contact of piezoelectric bodies. Computational Mechanics, 56, 491–502.

Saigal, A.,Giannakopoulos, A. E., Pettermann,H. E., & Suresh, S. (1999). Electrical response

during indentation of a 1–3 piezoelectric ceramic-polymer composite. J. Appl. Phys., 86,

–6.

Uchino, K. (1997). Piezoelectric actuators and ultrasonic motors. Boston MA: Kluwer

Academic.

Wang, J., Chen, C., & Lu, T. (2008). Indentation responses of piezoelectric films. Journal of

the Mechanics and Physics of Solids, 56, 3331–3351.

Wang, J., Chen,C.,&Lu, T. (2011). Indentation responses of piezoelectric films ideally bonded

to an elastic substrate. International Journal of Solids and Structures, 48, 2743–2754.

Wang, J., Fang, S., & Chen, L. (2002). The state vector methods for space axisymmetric

problems in multilayered piezoelectric media. International Journal of Solids and Structures,

, 3959–3970.

Wang, B., & Han, J. (2006). A circular indenter on a piezoelectric layer. Archive of Applied

Mechanics, 76, 367–379.

Wang, J., Lu, T.,&Chen, C. (2012). Indentation responses of piezoelectric films ideally bonded

to an elastic substrate. International Journal of Solids and Structures, 49, 95–110.

Wriggers, P. (2002). Contact problems in elasticity: A study of variational inequalities and

finite element methods. Chichester: JohnWiley & Sons.

Yang, F. (2008). Analysis of the axisymmetric indentation of a semi-infinite piezoelectric

material: the evaluation of the contact stiffness and the effective piezoelectric constant.

Journal of Applied Physics, 103, 074115.

Yang, J.,&Yang, J. (2005).Anintroduction to the theory of piezoelectricity.New York: Springer.

Downloads

Published

2016-01-01

How to Cite

Rodríguez-Tembleque, L., C. Buroni, F., & Sáez, A. (2016). Boundary element analysis of the frictionless indentation of piezoelectric films. European Journal of Computational Mechanics, 25(01-02), 24–37. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/822

Issue

Section

Original Article

Most read articles by the same author(s)