Boundary element analysis of the frictionless indentation of piezoelectric films
Keywords:
Piezoelectric, indentation, conducting electrical boundary condition, contact mechanics, boundary element methodAbstract
The boundary element method is used for studying frictionless indentation response of piezoelectric (PE) films under spherical indenter (i.e. sphere) and circular cylindrical indenter (i.e. punch). An augmented Lagrangian formulation is employed to solve PE films of finite thickness under contact conditions. The methodology is validated by comparison with theoretical solutions presented in the literature for the two limiting cases: infinitely thick and infinitely thin PE films closed-form solutions. Furthermore, the formulation is applied to compute the indentation response of those cases in between.
Downloads
References
Alart, P., & Curnier, A. (1991). A mixed formulation for frictional contact problems prone to
Newton like solution methods. Computer Methods in Applied Mechanics and Engineering,
, 353–375.
Aliabadi, M. H. (2002). The boundary element method, Applications in solids and structures
(Vol. 2). Chichester: JohnWiley & Sons.
Barboteu,M., Fernández, J.,&Ouafik, Y. (2008). Numerical analysis of two frictionless elasticpiezoelectric
contact problems. Journal of Mathematical Analysis and Applications, 339,
–917.
Blazquez, A.,Mantic, V.,&París, F. (2006). Application ofBEMto generalized plane problems
for anisotropic elastic materials in presence of contact. Engineering Analysis with Boundary
Elements, 30, 489–502.
Brebbia, C. A., & Dominguez, J. (1992). Boundary elements: An introductory course (2nd ed.).
Southampton: WIT Press.Buroni, F., & Sáez, A. (2010). Three-dimensional Green’s function and its derivative for
materials with general anisotropic magneto-electro-elastic coupling. Proceedings of the
Royal Society A, 466, 515–537.
Cady,W. (1946). Piezoelectricity. New York: McGraw-Hill.
Chen,W., & Ding, H. (1996). Indentation of a transversely isotropic piezoelectric half-space
by a rigid sphere. Acta Mechanica Solida Sinica, 12, 114–120.
Chen,W., Shioya, T., & Ding, H. (1999). The elastoelectric field for a rigid conical punch on
a transversely isotropic piezoelectric half-space. ASME Journal of Applied Mechanics, 66,
–771.
Christensen, P., Klarbring, A., Pang, J. S., & Strömberg, N. (1998). Formulation and
comparison of algorithms for frictional contact problems. International Journal for
Numerical Methods in Engineering, 42, 145–173.
Ding, H., & Chen, W. (2001). Three dimensional problems of piezoelasticity. NewYork: Nova
Science Publishers.
Ding, H., Hou, P., & Guo, F. (2000). The elastic and electric fields for three-dimensional
contact for transversely isotropic piezoelectricmaterials. International Journal of Solids and
Structures, 37, 3201–3229.
Fan, H., Sze, K., & Yang, W. (1996). Two-dimensional contact on a piezoelectric half-space.
International Journal of Solids and Structures, 33, 1305–1315.
Gao, C., & Noda, N. (2004). Green’s functions of a half-infinite piezoelectric body: Exact
solutions. Acta Mechanica, 172, 169–179.
Giannakopoulos, A., & Suresh, S. (1999). Theory of indentation of piezoelectric materials.
Acta Materialia, 47, 2153–2164.
Han, W., Sofonea, M., & Kazmi, K. (2007). Analysis and numerical solution of a frictionless
contact problem for electro-elastic-visco-plastic materials. Computer Methods in Applied
Mechanics and Engineering, 196, 3915–3926.
Hüeber, S., Matei, A.,& Wohlmuth, B. (2013). A contact problem for electro-elastic materials.
Zeitschrift für Angewandte Mathematik und Mechanik, 93, 789–800.
Ikeda, T. (1996). Fundamentals of piezoelectricity. Oxford: Oxford Science Publications.
Kalinin, S., Karapetian, E., & Kachanov, M. (2004). Nanoelectromechanics of piezoresponse
force microscopy. Physical Review B, 70, 184101-1–184101-24.
Kamble, S., Kubair, D., & Ramamurty, U. (2009). Indentation strength of a piezoelectric
ceramic: Experiments and simulations. Journal of Materials Research, 24, 925–934.
Ke, L. L., Yang, J., Kitipornchai, S., & Wang, Y. S. (2008). Electro-mechanical frictionless
contact behavior of a functionally graded piezoelectric layered half-space under a rigid
punch. International Journal of Solids and Structures, 45, 3313–3333.
Kikuchi,N.,&Oden, J. (1988). Contact problems in elasticity:Astudy of variational inequalities
and finite element methods. Philadelphia: SIAM.
Laursen, T. (2002). Computational contact and impactmechanics. BerlinHeidelberg: Springer.
Liu, M., & Fuqian, Y. (2012a). Electromechanical behaviour of a finite piezoelectric layer
under a flat punch. Smart Materials and Structures, 21, 105020(10pp).
Liu, M., & Fuqian, Y. (2012b). Finite element analysis of the spherical indentation of
transversely isotropic piezoelectricmaterials. Modelling and Simulation inMaterials Science
and Engineering, 20, 045019(15pp).
Liu, M., & Yang, F. (2013). Three-dimensional finite element simulation of the Berkovich
indentation of a transversely isotropic piezoelectric material: Effect of material orientation.
Modelling and Simulation in Materials Science and Engineering, 21, 045014 (14pp).
Mantiˇc, V. (1993). A new formula for the C-matrix in the Somigliana identity. Journal of
Elasticity, 33, 191–201.Mason, W. (1950). Piezoelectric crystals and their application to ultrasonics. New York: Van
Nostrand-Reinhold.
Matysiak, S. (1985). Indentation strength of a piezoelectric ceramic: Experiments and
simulations. Bulletin of the Polish Academy of Sciences, 33, 25–34.
Muralt, P. (2008). Recent progress in materials issues for piezoelectricMEMS. The American
Ceramic Society, 91, 1385–1396.
Pohanka, R., & Smith, P. (1988). Electronic ceramics, properties, devices and applications. New
York: Marcel Dekker.
Ramamurty, U., Sridhar, S., Giannakopoulos, A. E., & Suresh, S. (1999). An experimental
study of spherical indentation of piezoelectric materials. Acta Materialia, 47, 2417–2430.
Ramirez, G. (2006). Frictionless contact in a layered piezoelectric media characterized by
complex eigenvalues. Smart Materials and Structures, 15, 1287–1295.
Ramirez, G., & Heyliger, P. (2003). Frictionless contact in a layered piezoelectric half-space.
Smart Materials and Structures, 12, 612–625.
Rodríguez-Tembleque, L., Buroni, F. C., Abascal, R., & Sáez, A. (2011). 3D frictional contact
of anisotropic solids using BEM. European Journal of Mechanics A Solids, 30, 95–104.
Rodríguez-Tembleque, L., Buroni, F., & Sáez, A. (2015). 3D BEM for orthotropic frictional
contact of piezoelectric bodies. Computational Mechanics, 56, 491–502.
Saigal, A.,Giannakopoulos, A. E., Pettermann,H. E., & Suresh, S. (1999). Electrical response
during indentation of a 1–3 piezoelectric ceramic-polymer composite. J. Appl. Phys., 86,
–6.
Uchino, K. (1997). Piezoelectric actuators and ultrasonic motors. Boston MA: Kluwer
Academic.
Wang, J., Chen, C., & Lu, T. (2008). Indentation responses of piezoelectric films. Journal of
the Mechanics and Physics of Solids, 56, 3331–3351.
Wang, J., Chen,C.,&Lu, T. (2011). Indentation responses of piezoelectric films ideally bonded
to an elastic substrate. International Journal of Solids and Structures, 48, 2743–2754.
Wang, J., Fang, S., & Chen, L. (2002). The state vector methods for space axisymmetric
problems in multilayered piezoelectric media. International Journal of Solids and Structures,
, 3959–3970.
Wang, B., & Han, J. (2006). A circular indenter on a piezoelectric layer. Archive of Applied
Mechanics, 76, 367–379.
Wang, J., Lu, T.,&Chen, C. (2012). Indentation responses of piezoelectric films ideally bonded
to an elastic substrate. International Journal of Solids and Structures, 49, 95–110.
Wriggers, P. (2002). Contact problems in elasticity: A study of variational inequalities and
finite element methods. Chichester: JohnWiley & Sons.
Yang, F. (2008). Analysis of the axisymmetric indentation of a semi-infinite piezoelectric
material: the evaluation of the contact stiffness and the effective piezoelectric constant.
Journal of Applied Physics, 103, 074115.
Yang, J.,&Yang, J. (2005).Anintroduction to the theory of piezoelectricity.New York: Springer.