Micro-cracking of brittle polycrystalline materials with initial damage
Keywords:
Polycrystalline materials, micro-mechanics, microcracking, representative volume element, boundary element methodAbstract
In this paper, the effect of pre-existing damage on brittle micro-cracking of polycrystalline materials is explored. The behaviour of single and multiple cracks randomly distributed within a grain scale polycrystalline aggregate is investigated using a recently developed grain boundary 3D computational framework. Each grain is modelled as a single crystal anisotropic domain. Opening, sliding and/or contact at grain boundaries are modelled using nonlinear cohesive-frictional laws. The polycrystalline micro-morphologies are generated using Voronoi tessellation algorithms in combination with a regularisation scheme to avoid the presence of unnecessary small geometrical entities (edges and faces) usually responsible for excessively refined meshes. Additionally, a semi-discontinuous grain boundary mesh within the Boundary Element framework is employed to reduce the computational time and memory storage, while retaining analysis accuracy. To enhance the analysis convergence, a Newton–Raphson scheme is used. The performed numerical tests produce physically sound micro-cracking evolutions, confirming the potential of the technique for multiscale analysis of polycrystalline material damage and failure.
Downloads
References
Aliabadi, M. H. (2002). The boundary element method. Volume 2, Applications in solids and
structures. Chichester, West Sussex, England: Wiley.
Benedetti, I., & Aliabadi, M. H. (2013a). A three-dimensional grain boundary formulation for
microstructural modeling of polycrystalline materials. Computational Materials Science, 67,
–260. doi:http://dx.doi.org/10.1016/j.commatsci.2012.08.006
Benedetti, I., & Aliabadi, M. H. (2013b). A three-dimensional cohesive-frictional grainboundary
micromechanical model for intergranular degradation and failure in polycrystalline
materials. Computer Methods in Applied Mechanics and Engineering, 265, 36–62. doi:http://
dx.doi.org/10.1016/j.cma.2013.05.023
Benedetti, I., & Aliabadi, M. H. (2015). Multiscale modeling of polycrystalline materials:
A boundary element approach to material degradation and fracture. Computer Methods
in Applied Mechanics and Engineering, 289, 429–453. doi:http://dx.doi.org/10.1016/j.
cma.2015.02.018
Benedetti, I., Aliabadi, M. H., & Davì, G. (2008). A fast 3D dual boundary element method
based on hierarchical matrices. International Journal of Solids and Structures, 45, 2355–2376.
doi:http://dx.doi.org/10.1016/j.ijsolstr.2007.11.018
Benedetti, I., Milazzo, A., & Aliabadi, M. H. (2009). A fast dual boundary element method for
D anisotropic crack problems. International Journal for Numerical Methods in Engineering,
, 1356–1378. doi:http://dx.doi.org/10.1002/nme.2666
Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle
materials. International Journal of Solids and Structures, 33, 2899–2938. doi:http://dx.doi.
org/10.1016/0020-7683(95)00255-3Crisfield, M. A. (1981). A fast incremental/iterative solution procedure that handles
‘snap-through’. Computers & Structures, 13, 55–62. doi:http://dx.doi.org/10.1016/0045-
(81)90108-5
Espinosa, H. D., & Zavattieri, P. D. (2003a). A grain level model for the study of failure
initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical
implementation. Mechanics of Materials, 35, 333–364. doi:http://dx.doi.org/10.1016/S0167-
(02)00285-5
Espinosa, H. D., & Zavattieri, P. D. (2003b). A grain level model for the study of failure initiation
and evolution in polycrystalline brittle materials. Part II: Numerical examples. Mechanics of
Materials, 35, 365–394. doi:http://dx.doi.org/10.1016/S0167-6636(02)00287-9
Fan, Z., Wu, Y., Zhao, X., & Lu, Y. (2004). Simulation of polycrystalline structure with Voronoi
diagram in Laguerre geometry based on random closed packing of spheres. Computational
Materials Science, 29, 301–308. doi:http://dx.doi.org/10.1016/j.commatsci.2003.10.006
Farkas, D. (2013). Atomistic simulations of metallic microstructures. Current Opinion in Solid
State and Materials Science, 17, 284–297. doi:http://dx.doi.org/10.1016/j.cossms.2013.11.002
Gulizzi, V., Milazzo, A., & Benedetti, I. (2015). An enhanced grain-boundary framework for
computational homogenization and micro-cracking simulations of polycrystalline materials.
Computational Mechanics, 56, 631–651. doi:http://dx.doi.org/10.1007/s00466-015-1192-8
Jayatilaka, A. D. S., & Trustrum, K. (1977). Statistical approach to brittle fracture. Journal of
Materials Science, 12, 1426–1430. doi:http://dx.doi.org/10.1007/BF00540858
Kuzmin, A., Luisier, M., & Schenk, O. (2013). Fast methods for computing selected elements
of the green’s function in massively parallel nanoelectronic device simulations. In F. Wolf,
B. Mohr, & D. an Mey (Eds.), Euro-Par 2013 Parallel Processing (pp. 533–544). Berlin
Heidelberg: Springer.
Milazzo, A., Benedetti, I., & Aliabadi, M. H. (2012). Hierarchical fast BEM for anisotropic
time-harmonic 3-D elastodynamics. Computers & Structures, 96, 9–24. doi:http://dx.doi.
org/10.1016/j.compstruc.2012.01.010
Poloniecki, J. D., & Wilshaw, T. R. (1971). Determination of surface crack size densities in glass.
Nature, 229, 226–227. doi:http://dx.doi.org/10.1038/physci229226a0
Quey, R., Dawson, P. R., & Barbe, F. (2011). Large-scale 3D random polycrystals for the finite
element method: Generation, meshing and remeshing. Computer Methods in Applied
Mechanics and Engineering, 200, 1729–1745. doi:http://dx.doi.org/10.1016/j.cma.2011.01.002
Raje, N., Slack, T., & Sadeghi, F. (2009). A discrete damage mechanics model for high cycle
fatigue in polycrystalline materials subject to rolling contact. International Journal of Fatigue,
, 346–360. doi:http://dx.doi.org/10.1016/j.ijfatigue.2008.08.006
Rice, J. R. (1968). Mathematical analysis in the mechanics of fracture. In H. Liebowitz (Ed.),
Fracture: An advanced treatise, mathematical fundamentals (Vol. 2, pp. 191–311). New York,
NY: Academic Press.
Schenk, O., Bollhöfer, M., & Römer, R. A. (2008). On large-scale diagonalization techniques
for the anderson model of localization. SIAM Review, 50, 91–112. doi:http://dx.doi.
org/10.1137/070707002
Schenk, O., Wächter, A., & Hagemann, M. (2007). Matching-based preprocessing algorithms to
the solution of saddle-point problems in large-scale nonconvex interior-point optimization.
Computational Optimization and Applications, 36, 321–341. doi:http://dx.doi.org/10.1007/
s10589-006-9003-y
Sfantos, G. K., & Aliabadi, M. H. (2007a). A boundary cohesive grain element formulation
for modelling intergranular microfracture in polycrystalline brittle materials. International
Journal for Numerical Methods in Engineering, 69, 1590–1626. doi:http://dx.doi.org/10.1002/
nme.1831Sfantos, G. K., & Aliabadi, M. H. (2007b). Multi-scale boundary element modelling of material
degradation and fracture. Computer Methods in Applied Mechanics and Engineering, 196,
–1329. doi:http://dx.doi.org/10.1016/j.cma.2006.09.004
Sukumar, N., Srolovitz, D. J., Baker, T. J., & Prévost, J. H. (2003). Brittle fracture in polycrystalline
microstructures with the extended finite element method. International Journal for Numerical
Methods in Engineering, 56, 2015–2037. doi:http://dx.doi.org/10.1002/nme.653
Tomar, V., Zhai, J., & Zhou, M. (2004). Bounds for element size in a variable stiffness cohesive
finite element model. International Journal for Numerical Methods in Engineering, 61, 1894–
doi:http://dx.doi.org/10.1002/nme.1138
Wrobel, L. C. (2002). The boundary element method, Volume 1, Applications in thermo-fluids
and acoustics (Vol. 1). Chichester, West Sussex, England: Wiley.
Xu, X. P., & Needleman, A. (1985). Numerical simulations of dynamic interfacial crack growth
allowing for crack growth away from the bond line. International Journal of Fracture, 74,
–275. doi:http://dx.doi.org/10.1007/BF00033830
Yamakov, V., Saether, E., Phillips, D. R., & Glaessgen, E. H. (2006). Molecular-dynamics
simulation-based cohesive zone representation of intergranular fracture processes in
aluminum. Journal of the Mechanics and Physics of Solids, 54, 1899–1928. doi:http://dx.doi.
org/10.1016/j.jmps.2006.03.004
Zhou, X. W., Moody, N. R., Jones, R. E., Zimmerman, J. A., & Reedy, E. D. (2009). Moleculardynamics-
based cohesive zone law for brittle interfacial fracture under mixed loading
conditions: Effects of elastic constant mismatch. Acta Materialia, 57, 4671–4686. doi:http://
dx.doi.org/10.1016/j.actamat.2009.06.023