Micro-cracking of brittle polycrystalline materials with initial damage

Authors

  • V. Gulizzi Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM ), Università degli Studi di Palermo, Palermo, Italy
  • I. Benedetti Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM ), Università degli Studi di Palermo, Palermo, Italy

Keywords:

Polycrystalline materials, micro-mechanics, microcracking, representative volume element, boundary element method

Abstract

In this paper, the effect of pre-existing damage on brittle micro-cracking of polycrystalline materials is explored. The behaviour of single and multiple cracks randomly distributed within a grain scale polycrystalline aggregate is investigated using a recently developed grain boundary 3D computational framework. Each grain is modelled as a single crystal anisotropic domain. Opening, sliding and/or contact at grain boundaries are modelled using nonlinear cohesive-frictional laws. The polycrystalline micro-morphologies are generated using Voronoi tessellation algorithms in combination with a regularisation scheme to avoid the presence of unnecessary small geometrical entities (edges and faces) usually responsible for excessively refined meshes. Additionally, a semi-discontinuous grain boundary mesh within the Boundary Element framework is employed to reduce the computational time and memory storage, while retaining analysis accuracy. To enhance the analysis convergence, a Newton–Raphson scheme is used. The performed numerical tests produce physically sound micro-cracking evolutions, confirming the potential of the technique for multiscale analysis of polycrystalline material damage and failure.

Downloads

Download data is not yet available.

References

Aliabadi, M. H. (2002). The boundary element method. Volume 2, Applications in solids and

structures. Chichester, West Sussex, England: Wiley.

Benedetti, I., & Aliabadi, M. H. (2013a). A three-dimensional grain boundary formulation for

microstructural modeling of polycrystalline materials. Computational Materials Science, 67,

–260. doi:http://dx.doi.org/10.1016/j.commatsci.2012.08.006

Benedetti, I., & Aliabadi, M. H. (2013b). A three-dimensional cohesive-frictional grainboundary

micromechanical model for intergranular degradation and failure in polycrystalline

materials. Computer Methods in Applied Mechanics and Engineering, 265, 36–62. doi:http://

dx.doi.org/10.1016/j.cma.2013.05.023

Benedetti, I., & Aliabadi, M. H. (2015). Multiscale modeling of polycrystalline materials:

A boundary element approach to material degradation and fracture. Computer Methods

in Applied Mechanics and Engineering, 289, 429–453. doi:http://dx.doi.org/10.1016/j.

cma.2015.02.018

Benedetti, I., Aliabadi, M. H., & Davì, G. (2008). A fast 3D dual boundary element method

based on hierarchical matrices. International Journal of Solids and Structures, 45, 2355–2376.

doi:http://dx.doi.org/10.1016/j.ijsolstr.2007.11.018

Benedetti, I., Milazzo, A., & Aliabadi, M. H. (2009). A fast dual boundary element method for

D anisotropic crack problems. International Journal for Numerical Methods in Engineering,

, 1356–1378. doi:http://dx.doi.org/10.1002/nme.2666

Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle

materials. International Journal of Solids and Structures, 33, 2899–2938. doi:http://dx.doi.

org/10.1016/0020-7683(95)00255-3Crisfield, M. A. (1981). A fast incremental/iterative solution procedure that handles

‘snap-through’. Computers & Structures, 13, 55–62. doi:http://dx.doi.org/10.1016/0045-

(81)90108-5

Espinosa, H. D., & Zavattieri, P. D. (2003a). A grain level model for the study of failure

initiation and evolution in polycrystalline brittle materials. Part I: Theory and numerical

implementation. Mechanics of Materials, 35, 333–364. doi:http://dx.doi.org/10.1016/S0167-

(02)00285-5

Espinosa, H. D., & Zavattieri, P. D. (2003b). A grain level model for the study of failure initiation

and evolution in polycrystalline brittle materials. Part II: Numerical examples. Mechanics of

Materials, 35, 365–394. doi:http://dx.doi.org/10.1016/S0167-6636(02)00287-9

Fan, Z., Wu, Y., Zhao, X., & Lu, Y. (2004). Simulation of polycrystalline structure with Voronoi

diagram in Laguerre geometry based on random closed packing of spheres. Computational

Materials Science, 29, 301–308. doi:http://dx.doi.org/10.1016/j.commatsci.2003.10.006

Farkas, D. (2013). Atomistic simulations of metallic microstructures. Current Opinion in Solid

State and Materials Science, 17, 284–297. doi:http://dx.doi.org/10.1016/j.cossms.2013.11.002

Gulizzi, V., Milazzo, A., & Benedetti, I. (2015). An enhanced grain-boundary framework for

computational homogenization and micro-cracking simulations of polycrystalline materials.

Computational Mechanics, 56, 631–651. doi:http://dx.doi.org/10.1007/s00466-015-1192-8

Jayatilaka, A. D. S., & Trustrum, K. (1977). Statistical approach to brittle fracture. Journal of

Materials Science, 12, 1426–1430. doi:http://dx.doi.org/10.1007/BF00540858

Kuzmin, A., Luisier, M., & Schenk, O. (2013). Fast methods for computing selected elements

of the green’s function in massively parallel nanoelectronic device simulations. In F. Wolf,

B. Mohr, & D. an Mey (Eds.), Euro-Par 2013 Parallel Processing (pp. 533–544). Berlin

Heidelberg: Springer.

Milazzo, A., Benedetti, I., & Aliabadi, M. H. (2012). Hierarchical fast BEM for anisotropic

time-harmonic 3-D elastodynamics. Computers & Structures, 96, 9–24. doi:http://dx.doi.

org/10.1016/j.compstruc.2012.01.010

Poloniecki, J. D., & Wilshaw, T. R. (1971). Determination of surface crack size densities in glass.

Nature, 229, 226–227. doi:http://dx.doi.org/10.1038/physci229226a0

Quey, R., Dawson, P. R., & Barbe, F. (2011). Large-scale 3D random polycrystals for the finite

element method: Generation, meshing and remeshing. Computer Methods in Applied

Mechanics and Engineering, 200, 1729–1745. doi:http://dx.doi.org/10.1016/j.cma.2011.01.002

Raje, N., Slack, T., & Sadeghi, F. (2009). A discrete damage mechanics model for high cycle

fatigue in polycrystalline materials subject to rolling contact. International Journal of Fatigue,

, 346–360. doi:http://dx.doi.org/10.1016/j.ijfatigue.2008.08.006

Rice, J. R. (1968). Mathematical analysis in the mechanics of fracture. In H. Liebowitz (Ed.),

Fracture: An advanced treatise, mathematical fundamentals (Vol. 2, pp. 191–311). New York,

NY: Academic Press.

Schenk, O., Bollhöfer, M., & Römer, R. A. (2008). On large-scale diagonalization techniques

for the anderson model of localization. SIAM Review, 50, 91–112. doi:http://dx.doi.

org/10.1137/070707002

Schenk, O., Wächter, A., & Hagemann, M. (2007). Matching-based preprocessing algorithms to

the solution of saddle-point problems in large-scale nonconvex interior-point optimization.

Computational Optimization and Applications, 36, 321–341. doi:http://dx.doi.org/10.1007/

s10589-006-9003-y

Sfantos, G. K., & Aliabadi, M. H. (2007a). A boundary cohesive grain element formulation

for modelling intergranular microfracture in polycrystalline brittle materials. International

Journal for Numerical Methods in Engineering, 69, 1590–1626. doi:http://dx.doi.org/10.1002/

nme.1831Sfantos, G. K., & Aliabadi, M. H. (2007b). Multi-scale boundary element modelling of material

degradation and fracture. Computer Methods in Applied Mechanics and Engineering, 196,

–1329. doi:http://dx.doi.org/10.1016/j.cma.2006.09.004

Sukumar, N., Srolovitz, D. J., Baker, T. J., & Prévost, J. H. (2003). Brittle fracture in polycrystalline

microstructures with the extended finite element method. International Journal for Numerical

Methods in Engineering, 56, 2015–2037. doi:http://dx.doi.org/10.1002/nme.653

Tomar, V., Zhai, J., & Zhou, M. (2004). Bounds for element size in a variable stiffness cohesive

finite element model. International Journal for Numerical Methods in Engineering, 61, 1894–

doi:http://dx.doi.org/10.1002/nme.1138

Wrobel, L. C. (2002). The boundary element method, Volume 1, Applications in thermo-fluids

and acoustics (Vol. 1). Chichester, West Sussex, England: Wiley.

Xu, X. P., & Needleman, A. (1985). Numerical simulations of dynamic interfacial crack growth

allowing for crack growth away from the bond line. International Journal of Fracture, 74,

–275. doi:http://dx.doi.org/10.1007/BF00033830

Yamakov, V., Saether, E., Phillips, D. R., & Glaessgen, E. H. (2006). Molecular-dynamics

simulation-based cohesive zone representation of intergranular fracture processes in

aluminum. Journal of the Mechanics and Physics of Solids, 54, 1899–1928. doi:http://dx.doi.

org/10.1016/j.jmps.2006.03.004

Zhou, X. W., Moody, N. R., Jones, R. E., Zimmerman, J. A., & Reedy, E. D. (2009). Moleculardynamics-

based cohesive zone law for brittle interfacial fracture under mixed loading

conditions: Effects of elastic constant mismatch. Acta Materialia, 57, 4671–4686. doi:http://

dx.doi.org/10.1016/j.actamat.2009.06.023

Downloads

Published

2016-01-01

How to Cite

Gulizzi, V., & Benedetti, I. (2016). Micro-cracking of brittle polycrystalline materials with initial damage. European Journal of Computational Mechanics, 25(01-02), 38–53. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/823

Issue

Section

Original Article