Fundamental free-space solutions of a steady axisymmetric MHD viscous flow
Keywords:
MagnetoHydrodynamics, Lorentz body force, axisymmetric flow, Green’s flow, circular shape sourceAbstract
This work obtains the velocity and pressure fields of two fundamental axisymmetric MHD viscous flows of a conducting Newtonian liquid due to axial and radial distributions of forces on a ring in the presence of a uniform axial magnetic field B = Bez . The worked out procedure rests on the analytical determination of the pressure and of some of the Cartesian velocity components of another general three-dimensional fundamental MHD flow. The derived axisymmetric fundamental flows are found to deeply depend upon the nature (axial or radial) of the forces distributed on the ring, the ring size and the Hartmann layer thickness d = (√μ/σ)/|B|. This is illustrated by computing a few flow patterns using a suitable numerical treatment.
Downloads
References
Abramowitz, M. & Stegun, I. A. (1965). Handbook of mathematical functions. NewYork, NY:
Dover Publications.
Branover, G. G. & Tsinober, A. B. (1970). Magnetohydrodynamic of incompressible media.
Moscow: Nauka.
Chester,W. (1957). The effect of a magnetic field on Stokes flow in a conducting fluid. Journal
of Fluid Mechanics, 3, 304–308.
Chester,W. (1961). The effect of a magnetic field on the flow of a conducting fluid past a body
of revolution. Journal of Fluid Mechanics, 10, 459–465.
Dawson, T. W. (1995). On the singularity of the axially symmetric Helmholtz Green’s
function, with application to BEM. Applied Mathematical Modelling, 19, 590–601.
Dini, F., Khorasani, S., & Amrollahi, R. (2004). Green function of axisymmetric
magnetostatics. Iranian Journal of Science & Technology, Transaction A, 28(A2), 197–204.
Gotoh, K. (1960). Magnetohydrodynamic flow past a sphere. Journal of the Physical Society
of Japan, 15(1), 189–196.
Gotoh, K. (1960). Stokes flow of an electrically conducting fluid in a uniform magnetic field.
Journal of the Physical Society of Japan, 15(4), 696–705.Gradshteyn, I. S.&Ryzhik, Y. I.M. (1965). Tables of Integrals, Series. San Diego: And Products.
Academic Press Inc.
Happel, J. & Brenner, H. (1983). Low Reynolds number hydrodynamics. The Hague: Martinus
Nijhoff Publishers.
Hartmann, C. & Sanchez-Palencia, E. (1973). Limiting behaviour of a certain class of MHD
flows in a strong magnetic field. Magnetohydrodynamics, 1, 1–8.
Hartmann, J. (1937). Theory of the laminar flow of an electrically conductive liquid in a
homogeneousmagnetic field. Det Kgl. Danske Videnskabernes Selskab.Mathematisk-fysiske
Meddelelser, XV(6), 1–28.
Hasegawa, H. (1975). An extension of love’s solution for the axisymmetric problems of
elasticity. Bulletin of the JSME, 18(119), 484–492.
Hasegawa, H. (1976). Axisymmetric body force problems of an elastic half-plane. Bulletin of
the JSME, 19(137), 1262–1269.
Hasegawa, H. (1981). On the stress concentration problem of a circular shaft with a
semicircular groove under tension (an application of Green’s function for body force
problems of a solid cylinder). Bulletin of the JSME, 24(189), 520–527.
Hasegawa, H. (1988). A fundamental solution and boundary element method for torsion
problems of a bonded dissimilar eleastic solid. Tanaka, M., & Cruse, T.A.. eds. Boundary
Element Methods in Applied Mechanics. Chichester, UK: Wiley. (pp. 75–90)Chapter 5.
Hasegawa, H. (1992). Green’s functions for axisymmetric problems of dissimilar elastic solids.
Transactions of the ASME, 59, 312–320.
Hasegawa, H. (1984). Green’s function for axisymmetric body force problems of an elastic
half space and their application (an elastic half space with a hemispherical pit). Bulletin of
the JSME, 27(231), 1829–1835.
Kalis, K., Tsinober, A. B., Shtern, A., & Shcherbinin, E. V. (1965). Flow of a conducting fluid
past a circular cylinder in a transverse magnetic fluid. Magnitnaya Gidrodinamika, 1(1),
–28.
Kermanidis, T. (1975). A numerical solution for axially symmetrical elasticity problems.
International Journal of Solids Structures, 11, 493–500.
Kim, S. & Karrila, S. J. (1983). Microhydrodynamics. The Hague: Principles and selected
applications. Martinus Nijhoff Publishers.
Moreau, R. (1990). MagnetoHydrodynamics. Fluid Mechanics and its Applications.
Dordrecht: Kluwer Academic Publisher.
Pozrikidis, C. (1992). Boundary integral and singularity methods for linearized viscous flow.
Cambridge: Cambridge University Press.
Priede, J. (2013). Fundamental solutions of MHD Stokes flow. arXiv:1309.3886v1. Physics.
fluid. Dynamics.
Priede, J. & Gerbeth, G. (2006). Boundary-integral method for poloidal axisymmetric AC
magnetic fields. IEEE Transactions On Magnetics, 42(2), 1–8.
Sellier, A. Boundary element technique for slow viscous flows about particles. Boundary
Element Methods in Engineering and Sciences. Vol. 4.World Scientific, Chapter 7. pp. 239–
Sellier, A., Aydin, S.H. & Tezer-Sezgin, M. (2014a). A new boundary approach for the 2D
slow viscousMHDflow of a conducting liquid about a solid particle. Advances in Boundary
Element and Meshless Techniques XV, (Florence, 2014), pp. 393-406
Sellier, A., Aydin, S. H., & Tezer-Sezgin, M. (2014b). Free-space fundamental solution of a
D steady slow viscous MHD flow. CMES, 102(5), 393–406.
Tsinober, A. B. (1970). MHD flow around bodies. Fluid Mechanics and its Applications. Riga:
Kluwer Academic Publisher.Tsinober, A. B. (1973). Axisymmetric magnetohydrodynamic Stokes flow in a half-space.
Magnetohydrodynamics, 4, 450–461.
Tsinober, A. B. (1973). Green’s function for axisymmetric MHD Stokes flow in a half-space.
Magnetohydrodynamics, 4, 559–562.
Yosinobu, H. (1960). A linearized theory of magnetohydrodynamic flow past a fixed body in
a parallel magnetic field. Journal of the Physical Society of Japan, 15(1), 175–188.
Yosinobu, H. & Kabutani, T. (1959). Two-dimensional Stokes flow of an electrically
conducting fluid in a uniform magnetic field. Journal of the Physical Society of Japan,
(10), 1433–1444.