A new flat shell finite element for the linear analysis of thin shell structures

Authors

  • Djamal Hamadi Faculty of Sciences and Technology, Civil Engineering and Hydraulics Department, Biskra University, Biskra, Algeria
  • Ashraf Ayoub School of Mathematics, Computer Science, and Engineering, City University London, London, UK
  • Ounis Abdelhafid Faculty of Sciences and Technology, Civil Engineering and Hydraulics Department, Biskra University, Biskra, Algeria

Keywords:

Flat shell element, thin shell, strain based approach, static condensation

Abstract

In this paper, a new rectangular flat shell element denoted ‘ACM_RSBE5’ is presented. The new element is obtained by superposition of the new strain-based membrane element ‘RSBE5’ and the well-known plate bending element ‘ACM’. The element can be used for the analysis of any type of thin shell structures, even if the geometry is irregular. Comparison with other types of shell elements is performed using a series of standard test problems. A correlation study with an experimentally tested aluminium shell is also conducted. The new shell element proved to have a fast rate of convergence and to provide accurate results.

Downloads

Download data is not yet available.

References

Abed-Meraim, F., & Combescure, A. (2009). An improved assumed strain solidâ shell element

formulation with physical stabilization for geometric non-linear applications and elasticâ

plastic stability analysis. International Journal for Numerical Methods in Engineering, 80,

–1686.

Abed-Meraim, F., & Combescure, A. (2007). A physically stabilized and locking-free

formulation of the SHB8PS solid-shell element. European Journal of Computational

Mechanics, 16, 1037–1072.

Abed-Meraim, F., Trinh, V., & Combescure, A. (2012). Assumed strain solid–shell formulation

for the six-node finite element SHB6: Evaluation on non-linear benchmark problems.

European Journal of Computational Mechanics, 21, 52–71.

Abed-Meraim, F., Trinh, V., & Combescure, A. (2013). New quadratic solid–shell elements and

their evaluation on linear benchmark problems. Computing, 95, 373–394.

Adini, A., & Clough, R. W. (1961). Analysis of plate bending by the finite element method (Report

to the Nat. Sci. Found., G 7337), Arlington, TX, USA.

Alves de Sousa, R. J., Cardoso, R. P. R., Fontes Valente, R. A., Yoon, J. W., Grácio, J. J., & Natal

Jorge, R. M. N. (2005). A new one-point quadrature enhanced assumed strain (EAS) solidshell

element with multiple integration points along thickness: Part I – geometrically linear

applications. International Journal for Numerical Methods in Engineering, 62, 952–977.

Ashwell, D. G., & Sabir, A. B. (1972). A new cylindrical shell finite element based on simple

independent strain functions. International Journal of Mechanical Sciences, 14, 171–183.

Bathe, K. J., & Wilson, E. L. (1976). Numerical methods in finite element analysis. Englewood

Cliffs, NJ: Prentice Hall.

Batoz, J. L., & Dhatt, G. (1992). Modélisation des structures par éléments finis, (Vol. 3). Coques,

Ed. Paris: Hermès.

Belarbi, M. T. (2000). Développement de nouveaux éléments finis basés sur le modèle en

déformation. Application linéaire et non linéaire [Development of new finite elements based

on the strain model: Application to linear and nonlinear problems] (Thèse de Doctorat

d’état). Université de Constantine, Algérie.

Beles, A. A., & Soare, M. V. (1975). Elliptic and hyperbolic paraboloidal shells used in

construction. Bucharest (pp. 145–146). London: Editura Academiei. S.P. Christie.Bogner, F. K., Fox, R. L., & Schmit, L. A. (1967). A cylindrical shell discrete element. AIAA

Journal, 5, 745–750.

Cantin, G., & Clough, R. W. (1968). A curved, cylindrical-shell, finite element. AIAA Journal,

, 1057–1062.

Cardoso, R. P. R., Yoon, J. W., & Valente, R. A. (2006). A new approach to reduce membrane

and transverse shear locking for one-point quadrature shell elements: Linear formulation.

International Journal for Numerical Methods in Engineering, 66, 214–249.

Cardoso, R. P., Yoon, J. W., Mahardika, M., Choudhry, S., Alves de Sousa, R. J., & Fontes Valente,

R. A. (2008). Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods

for one‐point quadrature solid‐shell elements. International Journal for Numerical Methods

in Engineering, 75, 156–187.

Corner, J. J., Brebbia, C. (1967). Stiffness matrix for shallow rectangular shell element. Journal

of Engineering Mechanics (ASCE), 93, 43–65.

Djoudi, M. S., & Bahai, H. (2003). A shallow shell finite element for the linear and non-linear

analysis of cylindrical shells. Engineering Structures, 25, 769–778.

Djoudi, M. S., & Bahai, H. (2004). A cylindrical strain-based shell element for vibration analysis

of shell structures. Finite Elements in Analysis and Design, 40, 1947–1961.

Flugge, W., & Fosberge, K. (1966). Point load on shallow elliptic paraboloid. Journal of Applied

Mechanics, 33, 575–585.

Hamadi, D. (2006). Analysis of structures by non-conforming finite elements (PhD thessis). Civil

Engineering Department, Biskra University, Algeria, pp. 130.

Hartmann, F., & Kats, C. (2007). Structural Analysis with finite element methods. (2nd ed.).

Berlin: Springer-Verlag.

Jones, R. E., Strome, D. R. (1966). Direct stiffness method analysis of shells of revolution

utilizing curved elements. AIAA Journal, 4, 1519–1525.

Kulikov, G. M., & Plotnikova, S. V. (2010). A family of ANS four-node exact geometry shell

elements in general convected curvilinear coordinates. International Journal for Numerical

Methods in Engineering, 83, 1367–1406.

Melosh, D., & Belarbi, M. T. (2006). Basis for derivation of matrices for the direct stiffness

method. AIAA Journal, 7, 525–549.

Melosh, R. J. (1963). Basis of derivation of matrices for the direct stiffness method. Journal of

AIAA, 1, 1631–1637.

Mousa, A. I. (1992). Triangular finite element for analysis of spherical shell structures (UWCC

Publications, Internal Report). Cardiff: University of Wales, college Cardiff.

Mousa, A. I., & EL Naggar, M. H. (2007). Shallow spherical shell rectangular finite element for

analysis of cross shaped shell roof. Electronic Journal of Structural Engineering, 7, 769–778.

Mousa, A. I., & Sabir, A. B. (1994). Finite element analysis of fluted conical shell roof structures.

Computational Structural Engineering in Practice, Civil Comp. press- ISRN O-948 748- 30x,

–181.

Reese, S. (2007). A large deformation solid-shell concept based on reduced integration with

hourglass stabilization. International Journal for Numerical Methods in Engineering, 69,

–1716.

Sabir, A. B. (1997). Strain based shallow spherical shell element. Proc. Int. Conf on the Math.

Finite elements and application, Brunel University, England.

Sabir, A. B., & Charchaechi, T. A. (1982). Curved rectangular and general quadrilateral shell

finite elements for cylindrical shells. In J. R. Whiteman (Ed.), The math of finite element and

application (pp. 231–239). London: Academic Press.

Sabir, A. B., & Djoudi, M. S. (1990). A shallow shell triangular finite element for the analysis

of hyperbolic parabolic shell roof. FEMCAD. Struct. Eng. and Optimization, 49–54.

Sabir, A. B., & Djoudi, M. S. (1998). A shallow shell triangular finite element for the analysis

of spherical shells. Structural Analysis Journal, 51–57.Sabir, A. B., & Lock, A. C. (1972). A curved cylindrical shell finite element. IJMS, 14, 125–135.

Sabir, A. B., & Ramadhani, F. (1985). A shallow shell finite element for general shell analysis.

Variation Method in Engineering, Proceedings of the 2nd International Conference,

University of Southampton, England.

Schwarze, M., & Reese, S. (2009). A reduced integration solid-shell finite element based on

the EAS and the ANS concept-geometrically linear problems. International Journal for

Numerical Methods in Engineering, 80, 1322–1355.

Scordelis, A. C., & Lo, K. S. (1969). Computer analysis of cylindrical shells. Journal of American

Concrete Institute, 61, 539–561.

Simo, J. C., & Rifai, M. S. (1990). A class of mixed assumed strain methods and the method

of incompatible modes. International Journal for Numerical Methods in Engineering, 29,

–1638.

Zienkiewics, O. C. (1977). The finite element method (3rd ed.). London: McGraw Hill.

Zienkiewics, O. C., & Taylor, R. L. (2000). The finite element method, Vol. solid mechanics (5th

ed.). Butterworth: Heinemann.

Downloads

Published

2015-11-01

How to Cite

Hamadi, D., Ayoub, A., & Abdelhafid, O. (2015). A new flat shell finite element for the linear analysis of thin shell structures. European Journal of Computational Mechanics, 24(6), 232–255. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/838

Issue

Section

Original Article