Competing Hazards Regression Parameter Estimation Under Different Informative Priors
DOI:
https://doi.org/10.13052/jrss0974-8024.13246Keywords:
Competing risks, cause specific hazard, Cox regression, Burr type XII distribution, Bayes estimation, MCMC algorithmAbstract
In the analysis of survival data, cause specific quantities of competing risks get considerable attention as compared to latent failure time approach. This article focuses on parametric regression analysis of survival data using cause specific hazard function with Burr type XII distribution as a baseline model. We obtained maximum likelihood and Bayes estimates of cumulative cause specific hazard functions under competing risk setup. For Bayesian point of view we proposed a class of informative priors for parameters to observe the comprehensive compatibility and their effectiveness under two different loss functions. The appropriateness of model is measured by the simulation study. Finally, we illustrate the proposed methodologies using bone marrow transplant data from the Princess Margaret Hospital Ontario, Canada.
Downloads
References
Anjana, S., Sankaran, P.G., 2015. Parametric Analysis of Lifetime Data With Multiple Causes of Failure Using Cause Specific Reversed Hazard Rates. Calcutta Stat. Assoc. Bull. 67, 129–142.
Benichou, J., Gail, M.H., 1990. Estimates of absolute cause-specific risk in cohort studies. Biometrics 46, 813–826.
Beyersmann, J., Allignol, A., Schumacher, M., 2012. Competing risks and multistate models with R. Springer Science & Business Media. https://doi.org/10.1007/978-1-4614-2035-4
Bryant, J., Dignam, J.J., 2004. Semiparametric Models for Cumulative Incidence Functions. Biometrics 60, 182–190. https://doi.org/10.1111/j.0006-341X.2004.00149.x
Burr, I.W., 1942. Cumulative frequency functions. Ann. Math. Stat. 13, 215–232.
Byrnes, J.M., Lin, Y.J., Tsai, T.R., Lio, Y., 2019. Bayesian inference of δ
= P(X
Y) for Burr type XII distribution based on progressively first failure-censored samples. Mathematics 7, 794. https://doi.org/10.3390/math7090794
Couban, S., Simpson, D.R., Barnett, M.J., Bredeson, C., Hubesch, L., Howson-Jan, K., Shore, T.B., Walker, I.R., Browett, P., Messner, H.A., others, 2002. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies. Blood, J. Am. Soc. Hematol. 100, 1525–1531.
Cox, D.R., 1972. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B 34, 187–220. https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
Ge, M., Chen, M.H., 2012. Bayesian inference of the fully specified subdistribution model for survival data with competing risks. Lifetime Data Anal. 18, 339–363. https://doi.org/10.1007/s10985-012-9221-9
Geman, S., Geman, D., 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741.
Gupta, P.L., Gupta, R.C., Lvin, S.J., 1996. Analysis of failure time data by burr distribution. Commun. Stat. Methods 25, 2013–2024.
Hastings, W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.
Jeong, J.H., Fine, J., 2006. Direct parametric inference for the cumulative incidence function. J. R. Stat. Soc. Ser. C Appl. Stat. 55, 187–200. https://doi.org/10.1111/j.1467-9876.2006.00532.x
Kalbfleisch, J.D., Prentice, R.L., 2002. The Statistical Analysis of Failure Time Data. John Wiley & Sons. https://doi.org/10.1002/9781118032985
Kehinde, O., Osebi, A., Ganiyu, D., 2018. A New Class of Generalized Burr III Distribution for Lifetime Data. Int. J. Stat. Distrib. Appl. 4, 6–21.
Lai, C.D., Xie, M., Murthy, D.N.P., 2003. A modified Weibull distribution. Reliab. IEEE Trans. 52, 33–37. https://doi.org/10.1109/TR.2002.805788
Lawless, J.F., 2014. Parametric Models in Survival Analysis. Encycl. Biostat. https://doi.org/10.1002/0470011815.b2a11056
Lee, M., 2019. Parametric inference for quantile event times with adjustment for covariates on competing risks data. J. Appl. Stat. 46, 2128–2144. https://doi.org/10.1080/02664763.2019.1577370
Lunn, D., Jackson, C., Best, N., Spiegelhalter, D., Thomas, A., 2012. The BUGS book: A practical introduction to Bayesian analysis. Chapman and Hall/CRC.
Okasha, H.M., Shrahili, M., 2017. A New Extended Burr XII Distribution with Applications. J. Comput. Theor. Nanosci. 14, 5261–5269.
Pintilie, M., 2006. Competing risks: a practical perspective. John Wiley & Sons.
Prentice, R.L., Kalbfleisch, J.D., Peterson, A. V, Flournoy, N., Farewell, V.T., Breslow, N.E., 1978. The analysis of failure times in the presence of competing risks. Biometrics 34, 541–54.
Robert, C.P., Casella, G., Casella, G., 2010. Introducing monte carlo methods with r. Springer.
Sen, A., Banerjee, M., Li, Y., Noone, A.-M.M., 2010. A Bayesian approach to competing risks analysis with masked cause of death. Stat. Med. 29, 1681–1695. https://doi.org/10.1002/sim.3894
Sinha, S.K., 1998. Bayesian Estimation. New Age International (P) Limited Publisher.
Soliman, A.A., Abd Ellah, A.H., Sultan, K.S., 2006. Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches. Comput. Stat. Data Anal. 51, 2065–2077.
Soliman, A.A., Ellah, A.H.A., Abou-Elheggag, N.A., Modhesh, A.A., 2011. Bayesian Inference and Prediction of Burr Type XII Distribution for Progressive First Failure Censored Sampling. Intell. Inf. Manag. 03, 175–185. https://doi.org/10.4236/iim.2011.35021
Sreedevi, E.P., Sankaran, P.G., 2012. A semiparametric bayesian approach for the analysis of competing risks data. Commun. Stat. - Theory Methods 41, 2803–2818. https://doi.org/10.1080/03610920903551781