ESTIMATION OF POPULATION VARIANCE IN LOG – PRODUCT TYPE ESTIMATORS UNDER DOUBLE SAMPLING SCHEME

Authors

  • Prabhakar mishra Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, India
  • Rajesh Singh Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, India
  • Supriya Khare Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, India

DOI:

https://doi.org/10.13052/jrss2229-5666.1222

Keywords:

Bias, Mean Square Error, Auxiliary information, Double Sampling, Unbiased Estimator

Abstract

It is experienced that auxiliary information when suitably incorporated yields more efficient and precise estimates. Mishra et al. (2017) have introduced a log type estimator for estimating unknown population mean using ancillary information in simple random sampling. Here we propose an improved log-product type estimator for population variance under double sampling. Properties of the estimators are studied both mathematically and numerically.

Downloads

Download data is not yet available.

References

Adichwal, N.K., Sharma, P. and Singh, R. (2016) : Generalized class of estimators for population variance using information on two auxiliary

variables, IJACM, 3(2), p. 651-661.

Ahmed, M. S., Dayyeh, W. A. &Hurairah, A. A. O. (2003). Some estimators for finite population variance under two phase sampling, Statistics in Transition, 6(1), p. 143-150.

Bandopadhyay, A. and Singh, G. N.(2015). Estimation of ratio of population variances in absence and presence of non-response, Journal of Reliability and Statistical Studies, 8(1), p. 77-93.

Behl, S. and Tuteja, R.K. (1991). Ratio and product type exponential estimators, Journal of Information and Optimization Sciences 12, p. 159–163.

Cochran, W.G. (1977). Sampling Techniques, New York, John Wiley and Sons.

Das, A. K., and Tripathi, T. P. (1978). Use of auxiliary information in estimating the finite population variance, Sankhya, 40, p. 139–148.

Giancarlo, D. and Chiara, T. (2004). Estimation for finite population variance in double sampling, Metron, 62(2), p. 223-232.

Grover, L. K. (2010). A correction note on improvement in variance estimation using auxiliary information, Commun. Stat. Theo. Meth., 39(5), p. 753-764.

Isaki, C. T. (1983). Variance estimation using auxiliary information, Journal of American Statistical Association, 78, p. 117-123.

Jararha, J. A. and Ahmed, M. S. (2002). The class of chain estimators for a finite population variance using double sampling, Information and Management Sciences, 13(2), p. 13-18.

Jhajj, H. S., Sharma, M. K. and Grover, L. K. (2005). An efficient class of chain estimators of population variance under sub-sampling scheme, J. Japan Stat. Soc., 35(2), p. 273-286.

Jhajj, H. S. and Walia, J. S. (2011). A generalized difference-cum –ratio type estimator for the population variance in double sampling, International Journal of Applied Mathematics, 41(4), p. 265-269.

Kadilar, C. and Cingi, H. (2006). Improvement in variance estimation using auxiliary information, Hacettepe Journal of Mathematics and Statistics, 35(1), p. 111-115.

Mishra, P. and Singh, R. (2016): Variance estimation using arithmetic mean, geometric mean and harmonic mean under simple random sampling, Journal of Scientific Research, 60(1&2), p. 97-109.

Mishra, P., Adichwal, N. K. and Singh, R. (2017). A New log-product-type estimator using auxiliary information, Journal of Scientific Research, 61, 179-183.

Misra, P. (2016). On Improved Double Sampling Estimators of Population Variance Using Auxiliary Information, Journal of Reliability and Statistical Studies, 9(1), p. 93-100.

Sahai, A. and Ray, S.K. (1980). An Efficient Estimator Using Auxiliary Information, Metrika, 27, p. 271-275.

Shabbir, J. and Gupta, S. (2007). On improvement in variance estimation using auxiliary information, Communications in Statistics-Theory & Methods. 36(12), p. 2177-2185.

Sharma, P. and Singh, R. (2014). Improved dual to ratio type estimators for population variance, Chilean Journal of Statistics, 5(2), p. 45-54.

Sharma, P., Verma H.K., Singh, R. and Bouza, Carlos N.(2018). Estimators for population variance using auxiliary information on quartile, Revista Investigacion Operacional, 39(4), p. 528-535.

Singh S. (1991). Estimation of finite population variance using double sampling, Aligarh Journal of Statistics, 11, p. 53-56.

Singh, H. P. and Singh, R. (2001). Improved ratio type estimator for variance using auxiliary information, Journal of Indian Society of Agricultual Statistics, 54(3), p. 276-287.

Singh, H. P. and Singh, R. (2003). Estimation of variance through regression approach in two phase sampling, Aligarh Journal of Statistics, 23, p. 13-30.

Downloads

Published

2019-10-10

How to Cite

mishra, P. ., Singh, R. ., & Khare, S. . (2019). ESTIMATION OF POPULATION VARIANCE IN LOG – PRODUCT TYPE ESTIMATORS UNDER DOUBLE SAMPLING SCHEME. Journal of Reliability and Statistical Studies, 12(02), 11–20. https://doi.org/10.13052/jrss2229-5666.1222

Issue

Section

Articles