ON BAYESIAN ANALYSIS OF RIGHT CENSORED WEIBULL DISTRIBUTION USING APPROXIMATE METHODS
Keywords:
Quadrature Method, Gibbs Sampler, Importance Sampling (IS), Lindley’s Approximation, Tierney and Kadane's Approximation (TKA), Posterior Distributions, Loss FunctionsAbstract
In this paper, we have discussed the estimation for parameters of Weibull model under right censored samples. We have assumed two priors and two loss functions for the posterior estimation. As the Bayes estimators from the concerned posterior distributions do not exist in the explicit form, we have considered Quadrature method (QM), Gibbs sampler (GS), importance sampling (IS), Lindley’s approximation (LA) and Tierney and Kadane's approximation (TKA) to obtain the numerical solutions for the Bayes estimators. The performance of the different estimators has been compared using simulated results along with real example. The findings of the study suggest that estimators based on IS and TKA are superior in performance with certain conditions.
Downloads
References
Alizadeh, M., Bagheri, S. F., Jamkhaneh, E. B. and Nadarajah, S. (2015). Estimates of the PDF and the CDF of the exponentiated Weibull distribution, Braz. J. Probab. Stat,. 29, p. 695-716.
Almalki, S. J., and Yuan, J. (2013). A new modified Weibull distribution, Reliability Engineering and System Safety, 111, p. 164-170.
Bagheri, S. F., Alizadeh, M., Nadarajah, S. and Deiri, E. (2016). Efficient estimation of the PDF and the CDF of the Weibull extension model, Commun. Stat. Simul. Comput., 45, p. 2191-2207.
Bebbington, M., Lai, C. D. and Zitikis, R. (2007). A flexible Weibull extension, Reliability Engineering and System Safety, 92(6), p. 719-726.
Castellares, F. and Lemonte, A. J. (2015). A new generalized Weibull distribution generated by gamma random variables, Journal of the Egyptian Mathematical Society, 23(2), p. 382-390.
Choudhury, A. (2005). A simple derivation of moments of the exponentiated Weibull distribution, Metrika, 62, p. 17-22.
Cordeiro, G. M., Ortega, E. M. M. and Nadarajah, S. (2010). The Kumaraswamy Weibull distribution with application to failure data, Journal of the Franklin Institute, 347, p. 1399-1429.
Cordeiro, G. M. and de Castro, M. (2011). A new family of generalized distributions, Journal of Statistical Computation and Simulation, 81, p. 883-898.
Cordeiro, G. M., Nadarajah, S., Ortega, E. M. M. (2013). General results for the beta Weibull distribution, J. Stat. Comput. Sim., 83, p. 1082-1114.
Devroye, L. (1984). A simple algorithm for generating random variates with a log- concave density, Computing 33, p. 247-257.
El-Gohary, A., El-Bassiouny, A. H. and El-Morshedy, M. (2015). Inverse Flexible Weibull Extension Distribution, International Journal of Computer Applications, 115(2), p. 46-51.
Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis, Wiley, NewYork.
Gauss, C.F. (1810). Least squares method for the combinations of observations, (translated by J. Bertrand 1955). Mallet-Bachelier, Paris.
Hanook, S., Shahbaz, M. Q., Mohsin, M. and Golam Kibria, B. M. (2013). A note on beta inverse Weibull distribution, Communications in Statistics-Theory and Methods, 42, p. 320-335.
Kopal, I., Bakosova, D., Kostial, P., Jancikova, Z., Valicek, J. and Harnicarova, M. (2016). Weibull distribution application on temperature dependence of polyurethane storage modulus, International Journal of Materials Research, 107(5), p. 472-476.
Kundu, D. and Joarder, A. (2006). Analysis of Type-II progressively hybrid censored data, Computational Statistics and Data Analysis, 50, p. 2509-2528.
Lee, C., Famoye, F. and Olumolade, O. (2007). Beta-Weibull Distribution: Some Properties and Applications to Censored Data, J Mod Appl Stat Methods, 6, p. 173- 186.
Legendre, A. (1805). New methods for the determination of orbits of comets, Courcier, Paris.
Lindley, D. V. (1980). Approximate Bayes methods, Bayesian Statistics, Valency.
Liu, J., Wu, Z., Wu, J., Dong, J., Zhao, Y. and Wen, D. (2017). A Weibull distribution accrual failure detector for cloud computing, PLoS ONE 12(3): e0173666. https://doi.org/10.1371/journal.pone.0173
Mahmoudi, E. and Sepahdar, A. (2013). Exponentiated Weibull-Poisson distribution: Model, Properties and Applications, Math. Comput. Simul., 92, p. 76-97.
Nadarajah, S. and Gupta, A. K. (2005). On the moments of the exponentiated Weibull distribution, Commun tat-Theor M, 34, p. 253-256.
Norstrom, J. G. (1996). The use of precautionary loss functions in risk analysis, IEEE Trans. Reliab. 45(1), p. 400-403.
Ortega, E. M. M., Cordeiro, G. M., Campelo, A. K., Kattam, M. W. and Cancho, V. G. (2015). A power series beta Weibull regression model for predicting breast carcinoma, Stat. Med., 34, p. 1366-1388.