A GENERALIZED CLASS OF ESTIMATORS FOR ESTIMATING POPULATION MEAN USING IMPUTATION TECHNIQUE

Authors

  • Prabhakar Mishra Department of Statistics, Banaras Hindu University, Varanasi, India
  • Poonam Singh Department of Statistics, Banaras Hindu University, Varanasi, India
  • Rajesh Singh Department of Statistics, Banaras Hindu University, Varanasi, India

Keywords:

Imputation, Missing Data, MSE, Bias, Efficiency, SRSWOR

Abstract

This article deals with estimation of population mean for missing data in simple random sampling. The properties of the proposed procedure are studied up-to first order of approximation and under the optimality conditions proposed estimator outperforms other existing estimators. A numerical illustration, based on the two real data sets, highlights the efficiency gain using our proposed estimator.

Downloads

Download data is not yet available.

References

Abd-Elfattah, A.M., Sherpeny E.A., Mohamed S.M. and Abdou O.F. (2010).

Improvement in estimating the population mean in simple random sampling

using information on auxiliary attribute, Applied Mathematics and

Computation, 215, p. 4198-4202.

Ahmed, M. S., Al-Titi, O., Al-Rawi, Z. and Abu-Dayyeh, W. (2006).

Estimation of a population mean using different imputation methods, Statistics

in Transition, 7(6), p. 1247, 1264.

Al-Omari, A. I., Bouza, C. N. and Herrera, C. (2013). Imputation methods of

missing data for estimating the population mean using simple random

sampling with known correlation coefficient, Quality & Quantity, 47(1), p.

-365.

Kadilar, H. Cingi. (2005). A new estimator using two auxiliary variables,

Applied Mathematics and Computation, 162, p. 901–908.

Kalton, G. and Kasprzyk, D. (1982). Imputing for missing survey responses.

In Proceedings of the Section on Survey Research Methods, American

Statistical Association (Vol. 22, p. 31). American Statistical Association

Cincinnati.

Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N. and Smarandache, F.,

(2007). A general family of estimators for estimating population mean using

known value of some population parameter(s), Far East Journal of Theoretical

Statistics, 22, p. 181–191.

Lee, H., and Särndal, C. E. (1994). Experiments with variance estimation from

survey data with imputed values, Journal of Official Statistics, 10(3), p. 231-

Pandey, R., Thakur, N. S. and Yadav, K. (2015). Estimation of population

mean using exponential ratio type imputation method under survey non-

response, Journal of the Indian Statistical Association, 53(1), 89-107.

Sanaullah, A., Khan, H., Ali, H. A. and Singh, R. (2012). Improved

exponential ratio-type estimators in survey sampling, Journal of Reliability

and Statistical Studies, 5(2), p. 119-132.

Shabbir, J. and Gupta, S. (2015). A note on generalized exponential type

estimator for population variance in survey sampling, Revista Colombiana de

Estadística, 38(2), p. 385-397.11. Shukla, D., Thakur, N. S., Pathak, S. and Rajput, D. S. (2009). Estimation of

mean under imputation of missing data using factor-type estimator in two-

phase sampling, Statistics in Transition, 10(3), p. 397-414.

Shukla, D., Thakur, N. S., Thakur, D. S. and Pathak, S. (2011). Linear

combination based imputation method for missing data in sample,

International Journal of Modern Engineering Research, Vol. 1(2), p-580-596.

Singh, A. K., Singh, P. and Singh, V. K. (2014). Exponential-type

compromised imputation in survey sampling, Journal of the Statistics

Applications and Probability, 3(2), p. 211-217.

Singh, R., Chauhan, P., Sawan, N. and Smarandache, F. (2008. Ratio

estimators in simple random sampling using information on auxiliary attribute,

Pak. J. Stat. Oper. Res. 4(1), p. 47-53.

Singh, R. and Kumar, M. (2011). A note on transformations on auxiliary

variable in survey sampling, MASA, 6:1, p. 17-19.

Singh, R., Malik, S., Chaudhary, M.K., Verma, H. and Adewara, A. A. (2012).

A general family of ratio type- estimators in systematic sampling, Journal of

Reliability and Statistical Studies, 5(1), p. 73-82).

Singh, S. and Horn, S. (2000). Compromised imputation in survey sampling,

Metrika, 51(3), p. 267-276.

Thakur, N. S., Kalpana, Y. and Sharad, P. (2013). On mean estimation with

imputation in two-phase sampling design, Research Journal of Mathematical

and Statistical Sciences, 1(3), p. 1-9.

Thakur, N. S., Yadav, K. and Pathak, S. (2012). Some imputation methods in

double sampling scheme to estimate the population mean, Research Journal of

Mathematical and Statistical Sciences, 1(9), 1-10.

Upadhyaya, L. N. and Singh, H. P. (1999). Use of transformed auxiliary

variable in estimating the finite population mean, Biometrical. Journal, 41(5),

p. 627-636.

Downloads

Published

2017-10-30

How to Cite

Mishra, P. ., Singh, P. ., & Singh, R. . (2017). A GENERALIZED CLASS OF ESTIMATORS FOR ESTIMATING POPULATION MEAN USING IMPUTATION TECHNIQUE. Journal of Reliability and Statistical Studies, 10(02), 33–41. Retrieved from https://journals.riverpublishers.com/index.php/JRSS/article/view/20937

Issue

Section

Articles