A GENERALIZED CLASS OF ESTIMATORS FOR ESTIMATING POPULATION MEAN USING IMPUTATION TECHNIQUE
Keywords:
Imputation, Missing Data, MSE, Bias, Efficiency, SRSWORAbstract
This article deals with estimation of population mean for missing data in simple random sampling. The properties of the proposed procedure are studied up-to first order of approximation and under the optimality conditions proposed estimator outperforms other existing estimators. A numerical illustration, based on the two real data sets, highlights the efficiency gain using our proposed estimator.
Downloads
References
Abd-Elfattah, A.M., Sherpeny E.A., Mohamed S.M. and Abdou O.F. (2010).
Improvement in estimating the population mean in simple random sampling
using information on auxiliary attribute, Applied Mathematics and
Computation, 215, p. 4198-4202.
Ahmed, M. S., Al-Titi, O., Al-Rawi, Z. and Abu-Dayyeh, W. (2006).
Estimation of a population mean using different imputation methods, Statistics
in Transition, 7(6), p. 1247, 1264.
Al-Omari, A. I., Bouza, C. N. and Herrera, C. (2013). Imputation methods of
missing data for estimating the population mean using simple random
sampling with known correlation coefficient, Quality & Quantity, 47(1), p.
-365.
Kadilar, H. Cingi. (2005). A new estimator using two auxiliary variables,
Applied Mathematics and Computation, 162, p. 901–908.
Kalton, G. and Kasprzyk, D. (1982). Imputing for missing survey responses.
In Proceedings of the Section on Survey Research Methods, American
Statistical Association (Vol. 22, p. 31). American Statistical Association
Cincinnati.
Khoshnevisan, M., Singh, R., Chauhan, P., Sawan, N. and Smarandache, F.,
(2007). A general family of estimators for estimating population mean using
known value of some population parameter(s), Far East Journal of Theoretical
Statistics, 22, p. 181–191.
Lee, H., and Särndal, C. E. (1994). Experiments with variance estimation from
survey data with imputed values, Journal of Official Statistics, 10(3), p. 231-
Pandey, R., Thakur, N. S. and Yadav, K. (2015). Estimation of population
mean using exponential ratio type imputation method under survey non-
response, Journal of the Indian Statistical Association, 53(1), 89-107.
Sanaullah, A., Khan, H., Ali, H. A. and Singh, R. (2012). Improved
exponential ratio-type estimators in survey sampling, Journal of Reliability
and Statistical Studies, 5(2), p. 119-132.
Shabbir, J. and Gupta, S. (2015). A note on generalized exponential type
estimator for population variance in survey sampling, Revista Colombiana de
Estadística, 38(2), p. 385-397.11. Shukla, D., Thakur, N. S., Pathak, S. and Rajput, D. S. (2009). Estimation of
mean under imputation of missing data using factor-type estimator in two-
phase sampling, Statistics in Transition, 10(3), p. 397-414.
Shukla, D., Thakur, N. S., Thakur, D. S. and Pathak, S. (2011). Linear
combination based imputation method for missing data in sample,
International Journal of Modern Engineering Research, Vol. 1(2), p-580-596.
Singh, A. K., Singh, P. and Singh, V. K. (2014). Exponential-type
compromised imputation in survey sampling, Journal of the Statistics
Applications and Probability, 3(2), p. 211-217.
Singh, R., Chauhan, P., Sawan, N. and Smarandache, F. (2008. Ratio
estimators in simple random sampling using information on auxiliary attribute,
Pak. J. Stat. Oper. Res. 4(1), p. 47-53.
Singh, R. and Kumar, M. (2011). A note on transformations on auxiliary
variable in survey sampling, MASA, 6:1, p. 17-19.
Singh, R., Malik, S., Chaudhary, M.K., Verma, H. and Adewara, A. A. (2012).
A general family of ratio type- estimators in systematic sampling, Journal of
Reliability and Statistical Studies, 5(1), p. 73-82).
Singh, S. and Horn, S. (2000). Compromised imputation in survey sampling,
Metrika, 51(3), p. 267-276.
Thakur, N. S., Kalpana, Y. and Sharad, P. (2013). On mean estimation with
imputation in two-phase sampling design, Research Journal of Mathematical
and Statistical Sciences, 1(3), p. 1-9.
Thakur, N. S., Yadav, K. and Pathak, S. (2012). Some imputation methods in
double sampling scheme to estimate the population mean, Research Journal of
Mathematical and Statistical Sciences, 1(9), 1-10.
Upadhyaya, L. N. and Singh, H. P. (1999). Use of transformed auxiliary
variable in estimating the finite population mean, Biometrical. Journal, 41(5),
p. 627-636.