TL- MOMENTS AND L-MOMENTS ESTIMATION FOR THE TRANSMUTED WEIBULL DISTRIBUTION

Authors

  • Ashok Kumar Department of Statistics, University of Lucknow, Lucknow
  • Rajiv Saksena Department of Statistics, University of Lucknow, Lucknow

Keywords:

Transmuted Weibull Distribution, Order Statistics, L-moments, TL-moments, Monte Carlo simulation

Abstract

Accurate estimation of parameters of a probability distribution is of massive importance in statistics. Biased and vague estimation of parameters can lead to misleading results. The Transmuted Weibull Distribution (TWD) has the advantage of bring capable of modeling various types of data, so the accurate estimation of the parameters of this distribution is required. The main purpose of this paper is to develop the Trimmed Linear moments (TLmoments) of the TWD and use the TL-moments to estimate unknown parameters of the TWD. An special case, linear moments (L-moments) will be obtained and used to estimate the unknown parameters of the TWD. Monte Carlo Simulation technique is used to compare the L-moments and TL-moments of TWD.

Downloads

Download data is not yet available.

References

Abdul-Moniem, I. B. (2007). L-moments and TL-moments estimation for the

exponential distribution, Far East J. Theo. Stat., 23(1) p. 51-61.

Abdul-Moniem, I. B. (2009). TL-moments and L-moments estimation for the

Weibull distribution, Advances and Applications in Statistics, 15(1), p. 83-99.

Abdul-Moniem, I. B. and Selim, Y. M. (2009). TL-moments and L-moments

estimation for the generalized Pareto distribution, Applied Mathematical

Sciences, 3(1), p. 43-52.

Aryal, G. R. and Tsokos, C. P. (2011). Transmuted Weibull distribution: a

generalization of the Weibull probability distribution, European Journal of

Pure and Applied Mathematics, 4(2), p. 89-102.

Bilkova, D. (2014). Alternative means of statistical data analysis: L-moments

and TL-moments of probability distributions, Statistika, 94(2), p. 77-94.

Elamir, E. A., Seheult, A. H. (2003). Trimmed L-moments, Computational

Statistics & Data Analysis, 43, p. 299-314.

Hosking, J. (1990). L-moments: Analysis and estimation of distributions using

linear combinations of order statistics, Journal of Royal Statistical Society, B

(1), p. 105-124.

Kundu, D. and Raqab, M. Z. (2005). Generalized Pareto distribution: different

methods of estimations, Computational Statistics & Data Analysis, 49, p. 187-

R Core Team (2015). R: A language and environment for statistical

computing, R Foundation for Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/.

Shaw, W. and Buckley, I. (2007). The alchemy of probability distributions:

beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution

from a rank transmuted map, Research report.

Shazad, N. M., Asghar, S., F. and Shazadi, M. (2015). Parameter estimation of

power function distribution with TL-moments, Revista Colombiana de

Estadistica, 38(2), p. 321-334.

Tomer, S. and Kumar, A. (2014). Traditional moments and L-moments

estimation for the transmuted Exponentiated Lomax distribution,

Anushandhan Anveshika, 4, p. 119-128.

Vogel, R. M. and Fennessey, N. M. (1993). L-moments diagrams should

replace product moments diagrams, Water Resources Research, 29, p. 1745-

Downloads

Published

2017-11-05

How to Cite

Kumar, A. ., & Saksena, R. . (2017). TL- MOMENTS AND L-MOMENTS ESTIMATION FOR THE TRANSMUTED WEIBULL DISTRIBUTION. Journal of Reliability and Statistical Studies, 10(02), 127–136. Retrieved from https://journals.riverpublishers.com/index.php/JRSS/article/view/20951

Issue

Section

Articles