POSTERIOR ESTIMATES OF EXPONENTIATED MINIMAX DISTRIBUTION UNDER DIFFERENT PRIORS
Keywords:
Exponentiated Minimax Distribution, Prior Distribution, Posterior Distribution, R Software.Abstract
In this paper, Bayesian estimation of unknown parameter of the exponentiated minimax distribution is examined under different priors. The posterior distributions for the unknown parameter of the exponentiated minimax distribution are derived using the following priors: Jeffrey’s, extension of Jeffrey’s, gamma-exponential distribution, chi-square-exponential distribution, gamma-exponential-chi-square distribution and chi-square-exponential-inverse Levy distribution. A comparison of these informative and non- informative priors on the basis of posterior variances has also been discussed by making use of simulation techniques.
Downloads
References
Al-Kutubi, H. S. (2005). On comparison estimation procedures for parameter
and survival function, Iraqi Journal of Statistical Science, Vol. 9, p.1-14.
Dumonceaux, R. and Antle, C. (1973). Discrimination between the lognormal
and Weibull distribution, Technometrics, 15, p. 923–926.
Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data
by Lehmann alternatives, Communications in Statistics - Theory and Methods,
, p. 887-904.
Haq, A. and Aslam, M. (2009). On the double prior selection for the parameter
of Poisson distribution, INTERSTAT, November # 0911001.
Jeffery’s, H. (1964). An invariant form for the prior probability in estimation
problems, Proceedings of the Royal Society of London, Series. A., p. 453-
Jones, M.C. (2007). Connecting distributions with power tails on the real line,
the half line and the interval, International Statistical Review, 75, p. 58–69.
Kawsar Fatima and Ahmad, S. P. (2016). Characterization and Bayesian
estimation of minimax distribution, International Journal of Modern
Mathematical Sciences, 14(4), p. 423-447.
Lanping Li (2015). Bayesian estimation of shape parameter of minimax
distribution under different loss functions, Research Journal of Applied
Sciences, Engineering and Technology, 9(10), p. 830-833.
Nadarajah S. and Kotz S. (2006). The exponentiated type distributions, Acta
Applicandae Mathematica, 92 (2), p. 97-111.
Sultan, R., Sultan, H. and Ahmad, S. P. (2014). Bayesian analysis of power
function distribution under double priors, International Journal of Statistics
Applications and Probability 3, No. 2, p. 239-249.
Sultan, R. and Ahmad, S. P. (2012). Posterior estimates of poisson
distribution using R Software, Journal of Modern Applied Statistical Methods.
Vol. 11, No. 2, p. 530-535.
Radha, R. K. and Vekatesan, P. (2013). On the double prior selection for the
parameter of Maxwell distribution, International Journal of Scientific and
Engineering Research, Volume 4, Issue 5, p. 1238-1241.