POSTERIOR ESTIMATES OF EXPONENTIATED MINIMAX DISTRIBUTION UNDER DIFFERENT PRIORS

Authors

  • Kawsar Fatima Department of Statistics, University of Kashmir, Srinagar, India
  • S. P. Ahma Department of Statistics, University of Kashmir, Srinagar, India
  • T. A. Chish Department of Mathematics, University of Kashmir, Srinagar, India

Keywords:

Exponentiated Minimax Distribution, Prior Distribution, Posterior Distribution, R Software.

Abstract

In this paper, Bayesian estimation of unknown parameter of the exponentiated minimax distribution is examined under different priors. The posterior distributions for the unknown parameter of the exponentiated minimax distribution are derived using the following priors: Jeffrey’s, extension of Jeffrey’s, gamma-exponential distribution, chi-square-exponential distribution, gamma-exponential-chi-square distribution and chi-square-exponential-inverse Levy distribution. A comparison of these informative and non- informative priors on the basis of posterior variances has also been discussed by making use of simulation techniques.

Downloads

Download data is not yet available.

References

Al-Kutubi, H. S. (2005). On comparison estimation procedures for parameter

and survival function, Iraqi Journal of Statistical Science, Vol. 9, p.1-14.

Dumonceaux, R. and Antle, C. (1973). Discrimination between the lognormal

and Weibull distribution, Technometrics, 15, p. 923–926.

Gupta, R. C., Gupta, P. L. and Gupta, R. D. (1998). Modeling failure time data

by Lehmann alternatives, Communications in Statistics - Theory and Methods,

, p. 887-904.

Haq, A. and Aslam, M. (2009). On the double prior selection for the parameter

of Poisson distribution, INTERSTAT, November # 0911001.

Jeffery’s, H. (1964). An invariant form for the prior probability in estimation

problems, Proceedings of the Royal Society of London, Series. A., p. 453-

Jones, M.C. (2007). Connecting distributions with power tails on the real line,

the half line and the interval, International Statistical Review, 75, p. 58–69.

Kawsar Fatima and Ahmad, S. P. (2016). Characterization and Bayesian

estimation of minimax distribution, International Journal of Modern

Mathematical Sciences, 14(4), p. 423-447.

Lanping Li (2015). Bayesian estimation of shape parameter of minimax

distribution under different loss functions, Research Journal of Applied

Sciences, Engineering and Technology, 9(10), p. 830-833.

Nadarajah S. and Kotz S. (2006). The exponentiated type distributions, Acta

Applicandae Mathematica, 92 (2), p. 97-111.

Sultan, R., Sultan, H. and Ahmad, S. P. (2014). Bayesian analysis of power

function distribution under double priors, International Journal of Statistics

Applications and Probability 3, No. 2, p. 239-249.

Sultan, R. and Ahmad, S. P. (2012). Posterior estimates of poisson

distribution using R Software, Journal of Modern Applied Statistical Methods.

Vol. 11, No. 2, p. 530-535.

Radha, R. K. and Vekatesan, P. (2013). On the double prior selection for the

parameter of Maxwell distribution, International Journal of Scientific and

Engineering Research, Volume 4, Issue 5, p. 1238-1241.

Downloads

Published

2020-08-18

How to Cite

Fatima , K. ., Ahma, S. P. ., & Chish, T. A. . (2020). POSTERIOR ESTIMATES OF EXPONENTIATED MINIMAX DISTRIBUTION UNDER DIFFERENT PRIORS. Journal of Reliability and Statistical Studies, 10(01), 97–111. Retrieved from https://journals.riverpublishers.com/index.php/JRSS/article/view/20971

Issue

Section

Articles