PARAMETRIC INFORMATION GENERATING FUNCTION WITH UTILITIES
Keywords:
Information Generating Function, Discrete Probability Distribution, Utility Distribution.Abstract
In this paper, we have defined parametric relative information generating function with utilities. We have also discussed its particular and limiting cases. It is interesting to note that differentiation of this relative information generating function at t=0 produces various well known measures of information. The relative information generating function for different distributions have also been studied.
Downloads
References
Belies, M. and Guiasu, S. (1968). A quantitative-qualitative measure of
information in cybernetic systems, IEEE Trans. Inf. Theory, 14, p.593-594.
Golomb, S. W. (1966). The information generating function of probability
distribution, IEEE, Trans. Information Theory, IT-12, p.75-77.
Hardy, G. H., Littlewood, J. E. and Polya, G. (1952). Inequalities, 2nd ed.,
Cambridge Univ. Press, London and New York.
Hooda, D. S. and Sharma, D.K. (2009). Generalized useful information
generating function, Applied Mathematics and Informatics, 27, p.591-601.
Hooda, D. S. and Bhaker, U. S. (1995). On a weighted entropy generating
functions, Research Bulletin of Punjab Univ., 45, p.181-189.
Hooda, D. S. and Bhaker, U. S. (1995. On relative information generating
function with utilities, Ganita, 56(1), p.45-54.
Kumar, Parmil, Bhat Bilal Ahmad, and Hooda, D.S.(2007). Some new results on
relative information generating function, International Journal of Statistics and
Systems, 2(2), p.10-16.
Kullback,K. S. and Leibler, R. A. (1951). On Information and Sufficiency, Ann.
Math. Statistics, 22, p. 78-86.
Srivastava Amit, and Maheshwari Shikha (2011). A new weighted information
generating function for discrete probability distribution, Cybernetics and
Information Technologies, 11(4), p. 24-30
Shannon C.E. (1948). A mathematical theory of communication, Bell Tech-J., 2,
p. 623-659.