A COMPARATIVE STUDY UNDER PROGRESSIVELY FIRST FAILURE CENSORED RAYLEIGH DATA
Keywords:
Bayes Estimator, Progressive First Failure Censoring Scheme, ISELF, LLF.Abstract
A comparative study presented in this article for two different asymmetric loss functions is based on simulation. Two-parameter Rayleigh model is considered here as the underline model for evaluating the properties of Bayes estimators under progressive first failure censored data. Known and unknown both cases of location parameter are considered here for Bayes estimation of scale parameter.
Downloads
References
Abd - Elfattah, A. M., Hassan, A. S. and Ziedan, D. M. (2006). Efficiency of
MLE under different censored sampling schemes for Rayleigh distribution, 1 -
http:// interstat.journals.net./INDEX/March 06.html.
Ahmed, A., Ahmad, S. P. and Reshi, J. A. (2013). Bayesian analysis of
Rayleigh distribution, International Journal of Scientific and Research
Publications, 3 (10), p. 1-9.
Ali - Mousa M. A. M. and Al - Sagheer, S. A. (2005). Bayesian prediction for
progressively type – II censored data from Rayleigh model, Communication in
Statistics - Theory and Methods, 34, 2353 - 2361.
Azimi, R. and Yaghmaei, F. (2013). Bayesian estimation based on Rayleigh
Progressive Type - II censored data with binomial removals, Journal of
Quality and Reliability Engineering, Volume 2013, Article ID 896807,
http://dx.doi.org/10.1155/2013/896807, p. 1-6.
Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory,
Methods and Applications, Birkhauser Publishers, Boston.
Bain, L. J. and Engelhardt, M. (1992). Introduction to Probability and
Mathematical Statistics, 2nd Ed., Brooks / Cole, Cengage Learning, CA, P.
Dey, S. and Maiti, S. S. (2012). Bayesian estimation of the parameter of
Rayleigh distribution under the extended Jeffrey’s prior, Electronic Journal of
Applied Statistical Analysis, 5 (1), p. 44-59.
Fernandez, A. J. (2000). Bayesian inference from Type-II doubly censored
Rayleigh data, Statistical Probability Letters, 48, p. 393 - 399.
Johnson, L. G. (1964). Theory and Technique of Variation Research, Elsevier,
Amsterdam, Netherlands.
Kim, C. and Han, K. (2009). Estimation of the scale parameter of the Rayleigh
distribution under general progressive censoring, Journal of the Korean
Statistical Society, 38, p. 239 - 246.