AN ALTERNATIVE ESTIMATOR IN STRATIFIED RR STRATEGIES
Keywords:
Randomized Response Technique. Stratified Random Sampling, Proportional Allocation, Optimum Allocation.Abstract
This paper addresses the problem of estimating the proportion Sπ of the population having some sensitive characteristics using stratified randomize response model based on Warner’s model. We have suggested a class of estimators for the population proportion Sπ using Searls (1965) technique. It is shown that under certain conditions the proposed class of estimators is more efficient than Hong et al. (1994) and Kim and Warde (2004) estimators. The optimum estimator in the class is investigated. It has been shown that the optimum estimator is more efficient than Hong et al. (1994) and Kim and Warde (2004) estimators. Since the optimum estimator involves the use of an unknown population parameter Sπ it has therefore little practical utility. Using an estimated value of the parameter Sπ in the optimum estimator, an alternative estimator has been investigated for use in practice.
Downloads
References
Hong, K., Yum, J. and Lee, H. (1994). A stratified randomized response
technique, Korean Jour. Appl. Statist., 7, p. 141-147.
Kim, J. and Warde, W. (2004). A stratified Warner randomized
response mode, Jour. Statist. Plan. Infer., 120, p. 155-165.
Mangat, N. S. (1994). An improved randomized response strategy, Jour.
Roy. Statist. Soc., B, 56 (1), p. 93-95.
Mangat, N.S. and Singh, R. (1990). An alternative randomized
procedure, Biometrika, 77, p. 439-442.
Sampath, S., Uthayakumaran, N. and Tracy, S. D. (1995). On the alternative
estimator for randomized response technique, Jour. Ind. Soc. Agri. Statist.,
(3), p. 243-248.
Searles , D.T. (1965). The utilization of a known coefficient of variation in
the estimation procedure, Jour. Amer. Stat. Assoc., 59, p. 1225 - 1226
Singh, R. and Mangat, N.S. (1996). Elements of Survey Sampling,
Kluwer Academic Publishers, Dordrecht, the Netherlands.
Singh, S. and Singh, R. (1992). An alternative estimator for randomized
response technique, Jour. Ind. Soc. Agri. Statist., 44, p. 149-154.
Singh H.P. and Tarray T.A. (2012). A stratified unknown repeated trials in
randomized response sampling, Comm. Kor. Statist. Soc., 19, (6), p. 751-759.
Singh H.P. and Tarray T.A. (2014 a). An alternative to stratified Kim and
Warde’s randomized response model using optimal (Neyman) allocation,
Model Assist. Statist. Appl., 9, p. 37-62.
Singh H.P. and Tarray T.A. (2014 b). An improvement over Kim and Elam
stratified unrelated question randomized response model using Neyman
allocation, Sankhya – B, DOI : 10.1007/s13571-014-0088-5.
Singh H.P. and Tarray T.A. (2014 c). An adroit stratified unrelated question
randomized response model using neyman allocation, Sri. Jour. Appl. Statist.,
(2), p. 83-90.
Singh H.P. and Tarray T.A. (2014 d). An alternative to Kim and Warde’s
mixed randomized response model, Statist. Oper. Res. Trans. , 37 (2), p. 189
Singh H.P. and Tarray T.A. (2014 e). A dexterous randomized response model
for estimating a rare sensitive attribute using Poisson distribution, Statist.
Prob. Lett., 90, p. 42-45.
Singh H.P. and Tarray T.A. (2014 f). An efficient alternative mixed
randomized response procedure, Soc. Meth. Res., DOI: 10.1177/
Singh H.P. and Tarray T.A. (2014 g). An alternative to Kim and Warde’s
mixed randomized response technique, Statistica, Anno, 73(3), p. 379-402.
Warner, S. L. (1965). Randomized response: A survey technique for
eliminating evasive answer bias, Jour. Ameri. Statist. Assoc., 60, p. 63-69.
Warner, S. L. (1971). The Linear Randomized Response Model, Jour. Ameri.
Statist. Assoc., 66, p. 884-888.