AN ALTERNATIVE ESTIMATOR IN STRATIFIED RR STRATEGIES

Authors

  • Housila P. Singh School of Studies in Statistics, Vikram University, Ujjain - 456010 - India.
  • Tanveer A. Tarray School of Studies in Statistics, Vikram University, Ujjain - 456010 - India.

Keywords:

Randomized Response Technique. Stratified Random Sampling, Proportional Allocation, Optimum Allocation.

Abstract

This paper addresses the problem of estimating the proportion Sπ of the population having some sensitive characteristics using stratified randomize response model based on Warner’s model. We have suggested a class of estimators for the population proportion Sπ using Searls (1965) technique. It is shown that under certain conditions the proposed class of estimators is more efficient than Hong et al. (1994) and Kim and Warde (2004) estimators. The optimum estimator in the class is investigated. It has been shown that the optimum estimator is more efficient than Hong et al. (1994) and Kim and Warde (2004) estimators. Since the optimum estimator involves the use of an unknown population parameter Sπ it has therefore little practical utility. Using an estimated value of the parameter Sπ in the optimum estimator, an alternative estimator has been investigated for use in practice.

Downloads

Download data is not yet available.

References

Hong, K., Yum, J. and Lee, H. (1994). A stratified randomized response

technique, Korean Jour. Appl. Statist., 7, p. 141-147.

Kim, J. and Warde, W. (2004). A stratified Warner randomized

response mode, Jour. Statist. Plan. Infer., 120, p. 155-165.

Mangat, N. S. (1994). An improved randomized response strategy, Jour.

Roy. Statist. Soc., B, 56 (1), p. 93-95.

Mangat, N.S. and Singh, R. (1990). An alternative randomized

procedure, Biometrika, 77, p. 439-442.

Sampath, S., Uthayakumaran, N. and Tracy, S. D. (1995). On the alternative

estimator for randomized response technique, Jour. Ind. Soc. Agri. Statist.,

(3), p. 243-248.

Searles , D.T. (1965). The utilization of a known coefficient of variation in

the estimation procedure, Jour. Amer. Stat. Assoc., 59, p. 1225 - 1226

Singh, R. and Mangat, N.S. (1996). Elements of Survey Sampling,

Kluwer Academic Publishers, Dordrecht, the Netherlands.

Singh, S. and Singh, R. (1992). An alternative estimator for randomized

response technique, Jour. Ind. Soc. Agri. Statist., 44, p. 149-154.

Singh H.P. and Tarray T.A. (2012). A stratified unknown repeated trials in

randomized response sampling, Comm. Kor. Statist. Soc., 19, (6), p. 751-759.

Singh H.P. and Tarray T.A. (2014 a). An alternative to stratified Kim and

Warde’s randomized response model using optimal (Neyman) allocation,

Model Assist. Statist. Appl., 9, p. 37-62.

Singh H.P. and Tarray T.A. (2014 b). An improvement over Kim and Elam

stratified unrelated question randomized response model using Neyman

allocation, Sankhya – B, DOI : 10.1007/s13571-014-0088-5.

Singh H.P. and Tarray T.A. (2014 c). An adroit stratified unrelated question

randomized response model using neyman allocation, Sri. Jour. Appl. Statist.,

(2), p. 83-90.

Singh H.P. and Tarray T.A. (2014 d). An alternative to Kim and Warde’s

mixed randomized response model, Statist. Oper. Res. Trans. , 37 (2), p. 189

Singh H.P. and Tarray T.A. (2014 e). A dexterous randomized response model

for estimating a rare sensitive attribute using Poisson distribution, Statist.

Prob. Lett., 90, p. 42-45.

Singh H.P. and Tarray T.A. (2014 f). An efficient alternative mixed

randomized response procedure, Soc. Meth. Res., DOI: 10.1177/

Singh H.P. and Tarray T.A. (2014 g). An alternative to Kim and Warde’s

mixed randomized response technique, Statistica, Anno, 73(3), p. 379-402.

Warner, S. L. (1965). Randomized response: A survey technique for

eliminating evasive answer bias, Jour. Ameri. Statist. Assoc., 60, p. 63-69.

Warner, S. L. (1971). The Linear Randomized Response Model, Jour. Ameri.

Statist. Assoc., 66, p. 884-888.

Downloads

Published

2014-12-01

How to Cite

Singh, H. P. ., & Tarray, T. A. . (2014). AN ALTERNATIVE ESTIMATOR IN STRATIFIED RR STRATEGIES. Journal of Reliability and Statistical Studies, 7(02), 105–118. Retrieved from https://journals.riverpublishers.com/index.php/JRSS/article/view/21157

Issue

Section

Articles