COMPARISON BETWEEN MLE AND BAYES ESTIMATOR OF SCALE PARAMETER OF GENERALIZED GAMMA DISTRIBUTION WITH KNOWN SHAPE PARAMETERS UNDER SQUARED ERROR LOSS FUNCTION
Keywords:
Jeffrey’s Prior, Fisher Information, Squared Error Loss Function (SELF) , Maximum Likelihood Estimator (MLE), Posterior Expected Loss.Abstract
This papers presents the comparison between maximum likelihood estimator(MLE) and Bayes estimator of scale parameter of Generalized gamma distribution under Squared error loss function when shape parameters are known. Maximum likelihood estimator (MLE) of scale parameter is obtained. Using Jeffrey’s prior , Bayes estimator of scale parameter is obtained under squared error loss function .For comparison purpose, a simulation study is also carried out to compute the relative efficiency of Bayes estimator with respect to maximum likelihood estimator.
Downloads
References
Ahmed, A.O.M., Al-Kutubi, H.S. and Ibrahim N.A. (2010). Comparison of the
Bayesian and Maximum Likelihood Estimation for Weibull Distribution. J.
Math. Stat., 6(2), p. 100-104.
Bansal,A.K. (2007). Bayesian Parametric Inference, Narosa Publishing
House,New Delhi.
Cohen, A. C. (1969). A generalization of the Weibull distribution, Marshall
Space Flight Centre, NASA, Contractor Report No. 61293, Cont. NAS 8-111175.
Harter, H. L. (1967). Maximum likelihood estimation of a four parameters
generalized gamma population from complete and censored samples,
Technometrics, 9, p. 159-165.
Jeffreys, H. (1946). An invariant form for the prior probability in estimation
problems, Proc. R. Soc. Lond, A 24, September, Vol. 186, No. 1007, p.453-461.
Krishna,H. and Kumar, Kapil (2011). Reliability estimation in Generalized
gamma distribution with progressively censored data, Int.J. Agricult. Stat.Sci.,
(1), p. 15-29.
Lawless, J.F. (1982). Statistical Models and Methods for Life Time Data, John
Wiley and Sons, New York.
Sinha, S.K. (1986). Reliability and Life Testing, Wiley Eastern Ltd., New Delhi.
Sinha, S.K. (1998). Bayesian Estimation, New Age International (P) Ltd., New
Delhi.
Stacy, E.W. (1962). A generalization for the gamma distribution, Annals of
Mathematical Statistics, 33, p.1187-1192.