BAYESIAN ESTIMATION IN PARETO TYPE-I MODEL
Keywords:
Bayes estimator, Maximum Likelihood Estimator, Prior, Reliability Function, Hazard Rate Function, Square Error Loss Function and Asymmetric Precautionary Error Loss Function.Abstract
Bayes estimators of the shape parameters of a Pareto type-I model are obtained for different priors using Square Error and Asymmetric Precautionary Error Loss Functions through direct method and Lindley’s approach. Bayes estimators of reliability and hazard rate functions have also been discussed. The calculations have been illustrated with the help of numerical example. Comparison between Square Error and Asymmetric Precautionary Error Loss Functions have also been shown with the help of a numerical example.
Downloads
References
Ashour, S.K., Abdelhafez, M.E. and Abdelaziz, S. (1994). Bayesian and non-
Bayesian Estimation for the Pareto Parameters using Quasi-likelihood Function,
Microelectronics Reliability, 34, p. 1233–1237.
Bansal, A. K.(2007). Bayesian Parametric Inference, Narosa Publishing House,
New Delhi
Bermudez, P. de Zea and Turkman, M. A. Amaral (2003). Bayesian Approach to
Parameter Estimation of the Generalized Pareto Distribution, Mathematics and
Statistics, 12, p. 259-277.
Howlader, H. A. and Hossain, A. M.(2002). Bayesian survival estimation of
Pareto distribution of the second kind based on failure-censored data,
Computational Statistics and Data Analysis, 38, p. 301-314.
Lindley, D.V. (1980). Approximate Bayesian methods, Trabajos de Estatistica y de
Investigacian Operatica, Vol.-31, p. 223-245.
Nigma, A. M. and Hamdy, H. I. (2007). Bayesian Prediction Bounds for the Pareto
Lifetime Model, Communications in Statistics - Theory and Methods, 16, p. 1761-
Norstrom, J.G. (1996).The use of precautionary loss functions in risk analysis,
IEEE Trans. Reliab.45, p. 400–403.