ESTIMATION OF THE STATIONARY DISTRIBUTION OF A SEMI-MARKOV CHAIN

Authors

  • Vlad Stefan Barbu Université de Rouen, Laboratoire de Mathématiques Raphaël Salem, UMR 6085, Avenue de l' Université, BP.12, F76801 Saint-Étienne-du-Rouvray, France
  • Jan Bulla Université de Caen, Laboratoire de Mathématiques Nicolas Oresme, CNRS UMR 6139, 14032 Caen Cedex, France
  • Antonello Maruotti Università di Roma Tre, Dipartimento di Istituzioni Pubbliche, Economia e Società, Rome, Italy

Keywords:

semi-Markov chains, stationary distribution, nonparametric estimation, asymptotic properties.

Abstract

This article is concerned with the estimation of the stationary distribution of a discrete- time semi-Markov process. After briefly presenting the discrete-time semi-Markov setting, we propose an estimator of the associated stationary distribution. The main results concern the asymptotic properties of this estimator, as the sample size becomes large. A numerical example illustrates the asymptotic properties of the estimators.

Downloads

Download data is not yet available.

References

Barbu, V. and Limnios, N. (2008). Semi-Markov Chains and Hidden Semi-

Markov Models toward Applications - Their use in Reliability and DNA

Analysis. Lecture Notes in Statistics, vol. 191, Springer, New York.

Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice Hall, New

York.

Chryssaphinou, O., Karaliopoulou, M., and Limnios, N. (2008). On discrete

time semi-Markov chains and applications in words occurrences. Comm.

Statist. Theory Methods, 37, p. 1306-1322.

Howard, R. (1971). Dynamic Probabilistic Systems, v.2, Wiley, New York.

Janssen, J. and Manca, R. (2006). Applied Semi-Markov Processes. Springer,

New York.

Limnios, N. and Oprişan, G. (2001). Semi-Markov Processes and Reliability.

Birkhäuser, Boston.

Limnios, N., Ouhbi, B. and Sadek, A. (2005). Empirical Estimator of

Stationary Distribution for Semi-Markov Processes. Comm. Statist. Theory

Methods, 34(4), p. 987-995.

Ouhbi, B. and Limnios, N. (1999). Nonparametric estimation for semi-Markov

processes based on its hazard rate functions. Stat. Inference Stoch. Process.,

(2), p. 151-173.

Taga, Y. (1963). On the limiting distributions in Markov renewal processes

with finitely many states. Ann. Inst. Statist. Math., 15(1), p. 1-10.

Takács, L. (1959). On a sojourn time problem in the theory of stochastic

processes. Trans. Am. Math. Soc., 93, p. 531-540.

Downloads

Published

2012-01-18

How to Cite

Barbu, V. S. ., Bulla, J. ., & Maruotti, A. . (2012). ESTIMATION OF THE STATIONARY DISTRIBUTION OF A SEMI-MARKOV CHAIN. Journal of Reliability and Statistical Studies, 5, 15–26. Retrieved from https://journals.riverpublishers.com/index.php/JRSS/article/view/21949

Issue

Section

Articles