Features for a Style for
Push-communication Integrated Rich
Web-based Applications

Nalaka R. Dissanayake!*, Dharshana Kasthurirathna?
and Shantha Jayalal®

LDepartment of IT, Faculty of Computing, Sri Lanka Institute of Information
Technology, Malabe, Sri Lanka

2Department of SE, Faculty of Computing, Sri Lanka Institute of Information
Technology, Malabe, Sri Lanka

3Department of Industrial Management, Faculty of Science, University of Kelaniya,
Kelaniya, Sri Lanka

E-mail: nalakadmnr@ gmail.com

*Corresponding Author

Received 16 April 2022; Accepted 11 April 2023;
Publication 04 July 2023

Abstract

The development aspects of rich web-based applications have evolved; how-
ever, abstract concepts, like styles and patterns, are still lacking. If an abstract
style for rich web-based applications is available, it can support the whole
engineering process in many ways, like assisting in designing aspects and
the system’s evolution. We have produced an abstract architectural style
named RiWA Arch style for standard rich web-based applications, and we are
working on extending the same to realize integrating push-communication.
Push-communication has become a contemporary requirement in developing
features like real-time notifications in rich web-based applications. However,
the features to be expected from a style to realize the integration of the push-
communication are not yet recognized. This concept paper proposes a set
of features to be expected from a style for push-communication-integrated

Journal of Web Engineering, Vol. 22_3, 515-542.
doi: 10.13052/jwe1540-9589.2236
© 2023 River Publishers

516 N. R. Dissanayake et al.

rich web-based applications. Our ongoing research will later utilize these
features to form requirements and design a comprehensive style by extend-
ing the RiWAArch style to realize the abstract features of integrating true
push-communication into rich web-based applications.

Keywords: Architectural style, features, push-communication, rich web-
based applications.

1 Introduction

The core concepts of rich web-based applications (RiWAs) [1] were intro-
duced in the early 2000s. Since then, RiWAs have evolved over two decades
in many ways, especially in the user experience and development aspects.
Modern RiWAs benefit from push-communication (PC) to implement func-
tionalities such as notifications, which can further improve the user expe-
rience. Even though the development aspects of RiWAs are much evolved,
abstract concepts for RiWAs like architectural styles — which can offer many
advantages like increased realization and knowledge sharing — are still lack-
ing [2]. Software architectural styles can be considered an abstract description
of tried and tested good practices of the generic forms of architecture [3].
Section 2 details these background concepts.

The subsequent sections under the introduction discuss the following
aspects within the context of this paper: the problem focused on by this paper,
the aim, objectives, and hypotheses, and finally, the methodology. Then the
structure of the paper is given.

1.1 Research Problem and Motivation

The problem focused on by this paper is the non-recognition of features to
expect from an abstract style which can realize the integration of PC into
RiWAs. This problem is further elaborated on below.

As mentioned earlier, despite the evolution of RiWAs’ development
aspects, they still lack abstract concepts like styles. During this research,
it was noted that the development aspects of RiWAs have been much
matured to the present day to identify styles and patterns in them. However,
abstract styles or patterns focusing on RiWAs’ architectural and logical
implementations are still lacking [2].

Our ongoing study looks into the architectural formalism of the RiWAs
to understand their common characteristics towards introducing abstract

Features for a Style for Push-communication Integrated 517

styles and patterns. We have already introduced an architectural style named
RiWAArch style, which can realize the abstract features of the standard
request-response-based RiWAs [4] (refer to Section 5.3 for the RiWAArch
style review). As we continue our study, focusing more on PC-related func-
tionalities like notifications, it was understood that there are no abstract styles
for RiWAs, which can realize the integration of true push-communication
(TPC — refer to Section 3.3.1) into RiWAs. Our current research work
focuses on extending the RiWAArch style to realize the integration of TPC
into RiWAs. Nevertheless, to extend the RiWAArch style, it is essential to
understand the common characteristics of TPC-enabled RiWAs and identify
the features to be expected from a style, which can realize TPC-enabled
RiWAs. During the literature survey, it was comprehended that such features
are not yet recognized and discussed.

The motivation for recognizing the features to expect from an abstract
style to realize PC integration into RiWAs is as follows. Suppose features
to be expected from an architectural style to realize the TPC integration
with RiWAs can be identified. In that case, they can be utilized to extend
the RiWAArch style to realize TPC within RiWAs. The simplicity and
visibility provided by the resulting style may immensely assist the archi-
tectural properties, like reusability and maintainability [5]. As a result, the
rapid development of RiWAs can also be administered. We have highlighted
the importance of having an abstract architectural style to realize the PC
integration into the RiWAs in other forums [6, 7].

1.2 Research Aim, Hypothesis, and Objectives

This paper aims to identify a set of features to expect from an architectural
style and for this style to realize the integration of TPC into the RiWAs. This
paper presents and discusses the results of the initial steps of the current phase
of our ongoing research, which proposes a set of features to be expected
from a style for TPC-enabled RiWAs. These features will be later utilized
to extend the RiIWA Arch style to realize the TCP integration into RiWAs by
our ongoing research.

The literature considers that RiWAs are unique, therefore, do not have
general characteristics and common features [8]. Non-identification of the
general characteristics and features can be why RiWAs lack a coherent and
precisely described set of architectural formalism, mainly to realize the TPC
integration. The following hypothesis is set to support defining objectives
toward achieving the paper’s aim, bearing the uniqueness of the RiWAs in
mind.

518 N. R. Dissanayake et al.

Hy: Common characteristics and essential abstract features of true push-
communication integrated RiWAs can be identified — regardless of the
development TTs — which can then be used to identify the features expected
from an architectural style for push-communication integrated RiWAs.

The following objectives are set to prove this hypothesis in the direction

of achieving the paper’s aim.

* OB1. Understand PC features in the context of RiWAs. This objective
lays the foundation for OB2. Section 3 discusses the PC features in the
direction of achieving this objective.

* OB2. Identify common characteristics and essential abstract features of
TPC-integrated RiWAs. This objective aligns with step 1 of the method
specified in Section 1.3.1. The discussions are given in Section 4.1, built
on the knowledge of PC features identified in Section 3 while achieving
the OB1.

* OB3. Identify the features expected from an abstract style for TPC-
integrated RiWAs. This objective aligns with step 2 of the method
specified in Section 1.3.1. The discussions are given in Section 4.2,
based on the knowledge gained by achieving OB2. By achieving this
objective, the aim of this paper is also achieved.

1.3 Methodology

Our ongoing research is conceptual work, which differs from general empir-
ical software engineering research. The produced knowledge is mainly based
on the literature and the experience of the individuals who contributed to our
ongoing research, combined with extensive brainstorming by the researchers.
However, some formal methods have been utilized to govern the research
in different stages. The methods utilized within the scope of this paper are
discussed below.

1.3.1 Identification of the features to expect from a style for
TPC-enabled RiWAs

Unlike software systems, identifying the requirements for an architectural
style is not straightforward. The architectural style is an abstract concept that
realizes the general characteristics of similar systems; therefore, identifying
these general characteristics of the focused systems can assist in recognizing
the features to be expected from a style. Based on this notion, a process was
formulated containing three steps to define the requirements to design the

Features for a Style for Push-communication Integrated 519

RiWAArch style [4] during the early phases of our ongoing research. This
process is shown in Figure 1 below.

" Step 1: Identify common characteristics and

essential features for RiWAs -
Step 2: Identify the features to be expected é 4
from a style for RiIWAs a
Step 3: Define and set requirements for a N é y
style for RiWAs

* Set functional requirements
* Set non-functional requirements
* Set technical requirements

Figure 1 Requirements setting process to design a new style [4].

The exact process is utilized in the current research phase to set the
requirements for a style for the TPC-enabled RiWAs. This paper focuses on
step 2 of this process, which concentrates on identifying the features expected
from a style for TPC-integrated RiWAs. The steps of this process and their
employment in this paper are explained below.

Step 1 of this process tries to identify the common characteristics of
the targeted systems and their essential features. This step is mainly accom-
plished based on the knowledge gained through intensive literature surveys
and studying the existing technologies and techniques used to develop
RiWAs. Also, the experience of the contributed researchers gained by devel-
oping different aspects of RiWAs is utilized. The foundation knowledge
required for this stage is developed in Sections 2 and 3 while achieving
OB1 of this paper. Based on that foundational knowledge, the common
characteristics and essential features of TPC-integrated RiWAs are discussed
in Section 4.1 towards achieving OB2 of the paper.

In step 2, the features expected from a style are recognized based on the
knowledge of characteristics and features for the RiWAs identified in step
1. These features should realize the identified common characteristics and
essential features. Section 4.2 proposes the features to expect from a style to
realize the TCP integration in RiWAs while achieving OB3 of this paper.

In step 3, functional, non-functional, and technical requirements are
derived and set. The ultimate style should deliver the identified features to
be expected by satisfying these requirements. By contrast, if these defined
requirements are satisfied by a style, it is expected to deliver the identified
features. These aspects are not discussed in this paper.

520 N. R. Dissanayake et al.

1.3.2 Review of available styles

The review of available styles for RiWAs — in Section 5 — uses a set of criteria
to compare and contrast the available similar work towards emphasizing the
value of the ongoing research. This set of criteria aligns with the features
proposed in Section 4 and is given at the beginning of Section 5.

1.4 Structure of the Paper

Section 2 discusses the core background concepts of the research to form
the basis for the rest of the paper, based on the findings of this ongoing
research, some of which are already published. Section 3 extends the back-
ground to achieve objective 1 of the paper, discussing the concepts of the PC
towards understanding the features of the TPC. Section 4 includes the main
discussions of this paper — achieving objectives 2 and 3 — which proposes
a set of features to be expected from an architectural style for TPC-enabled
RiWAs towards understanding the integration of TPC into RiWAs. Section 5
reviews similar work to emphasize the importance of the work of our ongoing
research. Finally, Section 6 concludes the paper, also stating the future work
and the motivation for it.

2 Background

This section provides the terms, definitions, and related details within the
context needed to continue the discussions in the paper. Some of these terms
and definitions are the outcomes of the early stages of this ongoing research;
in such cases, the early publications of the ongoing research, which contain
in detail discussions of these outcomes, are given.

2.1 Software Architecture and Architectural Styles

Software architecture can be considered the foundation of any software
system. The support gained from a carefully designed sound architecture
is significant throughout all the phases of a software engineering (SE)
project [9]. The architecture provides an overall picture of the system and
assists in realizing it by depicting the formalism of the architectural elements
and their relationships. The increased realization helps the software systems
to evolve easily and rapidly by managing the changes [10-12]. Fielding [5]
explains that the configuration of the following three elements defines the
software architecture.

Features for a Style for Push-communication Integrated 521

(1) Components, which process data.
(2) Connectors, which communicate data.
(3) Data, which represents the data structures and values.

The constraints in the relationships between these elements help to induce
the desired set of architectural properties.

The architectural style is an abstract concept which can be utilized to
design software architectures. The style is defined by Fielding [5] as “a
coordinated set of architectural constraints that restricts the roles/features of
architectural elements and the allowed relationships among those elements
within any architecture that conforms to that style.” Fielding [5] states that
“an architectural style encapsulates important decisions about the architec-
tural elements and emphasizes important constraints on the elements and
their relationships.” He explains that it is easier to communicate the char-
acteristics of typical constraints by using an architectural style as a method
of abstraction rather than as an indicator of personalized design [5]. The
improved simplicity and visibility provided by the proper style(s) selected to
design a system’s architecture can help improve the architectural properties
like reusability and maintainability of the software system [5].

There are some valuable styles to support implementing web-based sys-
tems. The basic style of web-based systems is the client-server style, also
called the two-tier style. As required, the two-tier style can be extended
to three-tier or even n-tier. Model-view-controller (MVC), service oriented
architecture (SOA), and micro-services are some widely used styles in web
systems development. Also, there are some styles focusing on the specificity
of RiWAs, like jJAGA [8], SPIAR [13], and RiWAArch style [4], which are
reviewed in Section 5.

2.2 Rich Web-based Applications and Delta-communication

Rich Web-based Application (RiWA) [1] is a type of web-based applica-
tion [14] that provides a rich user experience — similar to desktop applica-
tions — via the combination of rich graphical user interfaces (GUIs) and a
faster communication model [15-17], called delta-communication (DC) [18].
Systems like Google apps and Facebook are examples of RiWAs.

The client-side app of a RiWA can be either a browser-based application,
a mobile app, or even an embedded system in an internet-of-things (IoT)
system [1]. Regardless of the nature of the client-side or server-side elements,
the RiWAs can be abstractly seen as a type of web-based system developed
based on the client—server architecture, with elements on the client-side

522 N. R. Dissanayake et al.

(client-elements), which communicate with the elements in a web server
(server-elements), for processing data.

Many new technologies and techniques (TTs) have been introduced
throughout the last two decades to support the development of different
aspects of RiWAs. Some examples are given below.

* Server-side — compatible frameworks for web servers like JAVA, Spring,
PHP, and Codelgnitor.

* Client-side — JavaScript (JS), jQuery, Angular, and Android.

e DC - AJAX [19], Comet [20], and WebSocket [21].

DC TTs are used for faster communication in both pull and push modes.
This research concentrates on the push-DC and related aspects utilized
to implement PC-enabled features in RiWAs, which are discussed in the
following section.

3 Understand the Features of Push-communication

Puch-communication (PC) is not a new concept; it has been a well-used
technique since the beginning of human communication, starting from tech-
niques like smoke signalling and pigeon posts and continuing to develop
through Morse code and radio broadcasting [22]. The literature shows that PC
styles have been used in implementing data networks from the beginning of
digital data networks [23-25]. Since the introduction of the web, PC has been
implemented by exploiting different technologies to develop solutions like
webcasting [26, 27]. We have discussed in depth the fundamental concepts
of PC and the evolution of PC towards RiWAs in a different forum [22]. This
section briefly discusses the fundamental concepts of PC in the context of
RiWAs towards achieving the OB1 of this paper.

3.1 Basics of Push-communication

Generally, HTTP-based communication in the web environment is built on
pull communication, where the client requests from the server and pulls
data using the request-response model. Unlike pull communication, PC is
where the server pushes the data/updates to the client(s) without explicit
requests. Since the beginning of the web, different TTs have been exploited
to implement PC in web-based systems. RiWAs would benefit from PC
to implement features like notification and real-time updates, which have
become necessary in modern web-based systems [22, 28].

Features for a Style for Push-communication Integrated 523

In general, PC means the server pushing data/content to a client app where
the user has not requested the same data/content from the server or any other
user/client. Even though the PC and related concepts are discussed in the
literature, none of them strongly defines the PC, particularly in the context of
RiWAs. Terms and definitions from the literature are given below.

* Techopedia explains push technology as “push technology is an internet
communication system in which the transaction request is generated by
the central web server or publisher” [29]. It further describes that push
technology can “push information to a user’s desktop instead of waiting
for user to make a request” [29].

* The request for comments of Generic Event Delivery Using HTTP
Push [30], which offers the HITP WEBPUSH technology, provides
some PC-related terminologies as follows. A push message is “a mes-
sage sent from an application server to a user agent via a push service”,
where a push service is “a service that delivers push messages to user
agents”. A user agent is “a device and software that is the recipient of
push messages”.

* The working draft of the push API [31] defines similar terms: “A push
message is data sent to a web application from an application server”,
where “application server refers to server-side components of a web
application”.

* Rute and Paulo [32] state that “in a push-based model interested parties
get the information if they have previously subscribed it, and infor-
mation gets distributed when it is available”, in their work related to
information-centric networking, which focuses on IoT-based systems.

These terms and definitions mainly explain PC in general and some other
related concepts within the context of their work. They do not attempt to
look at PC’s implementation or identify its features explicitly. In order to
understand the features of the PC towards introducing an architectural style
for RiWAs, we need to look into in-depth aspects of the PC. To assist that,
having a solid definition of PC is essential. Since there is no firm and explicit
definition for PC, this paper proposes to define PC as follows in the context
of RiWAs.

Push-communication in rich web-based applications is a communication
model where the server-components push data to the client-components.
The user of the RiWA is not explicitly triggering any events on the client to
send a request to the server-components, requesting the same data pushed
by the server-components.

524 N. R. Dissanayake et al.

In this setting, the user gets the impression of receiving real-time pushed
content from the server, regardless of the actual implementation of the PC.
The features related to the implementation of the PC are discussed in the
following sections.

3.2 Integrate Push-communication into RiWAs

The concept of PC is not very complex; however, integrating the same
into a much more advanced RiWA would introduce a higher level of
complexity, which may negatively affect the system in many aspects like
maintainability, sustainability, and modifiability. Usually, in a comprehen-
sive RiWA, PC-enabled features might be integrated with other features,
which are implemented to use pull-DC and standard HTTP-based request—
response communication. When the number of rich features that utilize the
PC increases, there is a possibility of exponentially increasing the system’s
complexity, lowering the maintainability and evolvability.

DC [18] in RiWAs works in pull and push communication modes. There
are various TTs to implement DC in RiWAs, where some techniques like
AJAX [19] are used for pull-communication, and TTs like Comet and Web-
Socket [21] are used to implement PC in RiWAs. Some other protocol-level
solutions have been recently introduced for implementing PC, namely, server
push in HTTP/2 [33] and Webpush protocol [34].

3.3 Features of Push-communication in Rich Web-based
Applications

While studying the PC-enabled functionalities in RiWAs, we have identified
the features of PC, which are analyzed and briefly discussed below. This
discussion achieves OB1 of this paper. The knowledge of the features of PC
is required to discuss the features to be expected from a style for PC-enabled
RiWAs.

3.3.1 Push-simulation vs. true push-communication

Even though PC generally means the server pushing data to the client(s) —
aligning with the proposed definition in Section 3.1 — there are two
approaches to implementing PC in RiWAs, which are discussed below.

In the context of DC, early attempts to implement PC in RiWAs only
exploit pull-DC TTs to simulate PC based on the request-response model. For
example, in polling and long-polling [20], XHR [35] requests (the technology
used in AJAX [19]) are automatically sent by the client-component(s) to pull

Features for a Style for Push-communication Integrated 525

updates from the server-components and then show them on the GUI. The
user gets the impression that the server has pushed the updates since the user
has not explicitly sent a request by triggering any event on the GUI. This
implementation simulates the PC in RiWAs. This research calls the concept of
simulating the PC — built on the request—response model — push-simulation.
The early attempts to implement PC in RiWAs were based on push-simulation
TTs like polling and long-polling [20].

Later, advanced technologies like SSE [24] and WebSocket [25] were
introduced to implement PC in RiWAs in the form of DC. Using these
advanced TTs makes it possible to implement server-elements to push data
to the clients without receiving requests for the same data from the same
clients. These TTs also support implementing client-components to capture
the data pushed by the server and show them on GUIs. There can be cases
where a different client or server may initiate the PC (refer to Section 3.3.3);
however, the receiving client is still not explicitly requesting data from
the server. This research uses the term true push-communication (TPC) to
denote the concept of a server pushing data to a client without receiving
a request from the same client. The WebSocket is a TPC-implementing
technology.

Since the request-response model can realize push-simulation imple-
mentation, a style that realizes a request-response-based DC can also
realize push-simulation. The RiWAArch style [4] firmly realizes the request—
response-based DC; hence, the support for implementing push-simulation can
be well expected. This ongoing research focuses on extending the RiWA Arch
style to realize the integration of TPC based on the features proposed by this

paper.

3.3.2 Push-communication styles/modes

There are multiple architectural styles available to explain the formalisms
of PC, which are unicasting, multicasting, broadcasting, and publisher—
subscriber styles [22, 36, 37]. However, realizing these styles through a single
comprehensive style for PC-integrated RiWAs is yet to be discussed and initi-
ated by this paper. In this paper, these styles are referred to as the push-modes.
A style for PC-integrated RiWAs is expected to realize these push-modes
providing robust support to implement PC in RiWAs using these modes.
The server must contain the necessary elements to understand the push-mode
and push the content to the target client(s). The support for push-modes can
improve a style’s adoptability and evolvability since such a style can assist in
implementing PC functionalities using the required push-mode(s).

526 N. R. Dissanayake et al.

3.3.3 Server-event-driven

In the literature, even though the term event is used in the context of PC, it is
not firmly defined. The term event is primarily used in PC-related literature to
denote a set of data — associated with the events triggered in the server — to be
pushed to the client by the server, like in the technology named Server-Sent
Events [38]. Nevertheless, in this research, the term event explicitly indicates
the events triggered in the server, similar to event-driven programming.

The PC-related literature [36, 37] uses the concepts aperiodic and peri-
odic to explain the event-driven aspects of the PC. Aperiodic PC is explained
as an event-driven PC, where the PC is performed as the events — such as
user actions or data updates — are triggered. Periodic PC is described as
the PC performed according to a pre-arranged schedule established for the
information transfer operations to follow. Technically, a schedule also triggers
events to initialize some process; therefore, both aperiodic and periodic
concepts can be seen as event-based mechanisms.

The position of this paper on the server-event-driven nature of the PC
is as follows. Execution of logic in a server — to process either a user
request or respond to a scheduler — which makes the server initiate PC, can
be considered triggering events in the server to perform PC. In this paper, the
events triggered in a server to perform PC are called push-events. Some use
cases that trigger push-events in a server are given below as examples.

* When a user sends a chat message to the server, it triggers a push-event
in the server to push the message to the target user. The sending user’s
action triggers a push-event in the server, asking the server to push the
data to the receiving user on behalf of the sending user.

* A user inserts a new item into a database, and the server pushes the new
item’s data to the users who are viewing the items. In this case, the insert
item logic triggers a push-event for the viewing users to receive real-time
updates.

* When an author publishes an article, a notification is sent to the readers
who have subscribed to the author. Here, the notification is pushed to the
readers due to the author’s publishing process, which triggers a push-
event to push the notification. This case is an example of a PC feature,
based on the publisher—subscriber mode.

* A schedule, which triggers a push-event to count the number of users
logged in within the last hour and push the count to a dashboard of the
admin users of the system. This is an example of a periodic PC.

* When a user signs into a system, notifications of the earlier events —
which had been triggered when the user was not online — can be pushed

Features for a Style for Push-communication Integrated 527

to the client. These notifications are pushed in non-real-time as the user’s
sign-in process triggers a push-event. This is an example of non-real-
time PC.

* An embedded system with a sensor to identify the temperature changes
sends the data to the server to push the data to the users in real-time. The
embedded system’s request to send data to the server triggers a push-
event, which means the logic of the request handler in the server has to
trigger the push-event. This case is an example of implementing PC in
ToT-based systems.

Looking at these examples, we can understand that a push-event should
be triggered in the server to initiate the TPC from server to client. These
push-events can be triggered by the execution of different types of logic in
the server, and the server is the true sender of the PC. Based on this notion,
this research uses the term push-event, defined as below.

A push-event is any event that triggers the server to push content to the
client(s). It can be understood that the push-events can be triggered as a
part of some other processes. When a push-event is triggered, the server
takes the necessary actions to push the appropriate content to the relevant
client(s).

It should be noted that the TPC is always server-event-driven, and the
server implements the event handlers to perform the TPC.

3.3.4 Real-time vs. non-real-time push-communication

The PC can perform in either real-time or non-real-time. If the receiver of
the PC is available when the push-event is triggered, the server can push the
content to the receiver in real-time. Nevertheless, the server cannot push the
content to the receiver in real-time if the receiving user is unavailable online
when the push-event is triggered. In such a case, there should be a mechanism
for the server to save the content and push it later when the user is available
again. For example, when a user sends a chat message to another user if the
receiving user is not online, the message should be saved and delivered when
the receiving user connects to the system later.

The PC, performed when the push-event is triggered, is considered a
real-time PC. The real-time PC allows the users to receive content when a
push-event is triggered. In that case, the received content is directly related to
the push-event triggered in the server, which initiated the TPC. The PC, which
happens later, after the original push-event is triggered, can be considered a

528 N. R. Dissanayake et al.

non-real-time PC. The server must keep the push-content saved to be pushed
later when the target user is available again. Since the PC is server-event-
driven, there is supposed to be a push-event to initiate the non-real-time PC
when the client connects to the server again. The client’s first request to
connect to the server can be exploited to trigger a push-event for the server to
look for any saved push-content for the client and push them in non-real-time.
In this case, the pushed content is not directly related to the latest push-event
since the latest push-event is not the original push-event, which wanted to
push the content.

4 Features to Expect from a Push-communication
Integrated Style for Rich Web-based Applications

This section first discusses the common characteristics and essential features
identified in PC-enabled RiWAs based on the features of PC discussed in
Section 3.3. Based on that knowledge, this section proposes a set of features
to be expected from a style for PC-enabled RiWAs, following the method
stated in Section 1.3.

Our ongoing research has already produced a style named RiWAArch
style [4], which can realize the standard pull communication-based RiWAs.
Since we have already discussed the features of the RiWAArch style in a
different paper [4], they are not discussed again in this paper. The features
proposed in this section only focus on extending the RiWAArch style to
realize integrating PC to standard pull communication-based RiWAs.

4.1 Step 1: Identify Common Characteristics and Essential
Features for Push-communication Enabled RiWAs

This section fulfils OB2 of this paper, aligning with step 1 of the
requirements-setting process given in Section 1.3.1.

We have previously identified and discussed the common characteristics
and essential features of standard general pull-communication-based RiWAs.
Common characteristics are client-side event handling and split business
logic between client and server, and the essential features are effective
modularization and proper DC handling and management [4]. Since we have
already discussed them in different forums [4, 39], this paper does not detail
them. This section only discusses the characteristics and features related to
the PC-based functionalities in RiWAs, identified by studying PC-enabled
RiWAs, in the direction of extending the RiWAArch style.

Features for a Style for Push-communication Integrated 529

4.1.1 Common characteristic 1 — push-simulation vs. true
push-communication

The push-communication is implemented in RiWAs using push-simulation

or TPC TTs (refer to Section 3.3.1). It was noted that RiWAs mostly use

push-simulation TTs, which are easier to develop PC-enabled features since

push-simulation is based on the traditional request—response model.

The TPC implementation TTs require additional elements and settings,
which make the development of RiWAs much more complex. For example,
when WebSocket [21] is used, a WebSocket server is needed to be imple-
mented, and for the server components to communicate with the WebSocket
server — to push content to the clients — some other TTs like RowSocket
should be used [40]. However, WebSocket improves the scalability and
performance of RiWAs [41], and as a result, the user experience can also be
increased. This research focuses on the RiWAs, which use advanced TPC TTs
like WebSocket to implement PC-enabled features toward higher scalability
and performance.

4.1.2 Common characteristic 2 — push-events in server

When using the PC, the push-events are triggered in the server to initiate the
TPC from the server to the client(s) (refer to Section 3.3.3). This behavior is
typical in TPC-enabled RiWAs, regardless of the type of the event or the push-
initiator. The TPC-integrated RiWAs should include proper logic in the server
to process these push-events. Section 4.2.3 discusses this aspect further.

4.1.3 Common characteristic 3 — real-time vs. non-real-time
According to the recipient’s availability, the server components of RiWAs
may require pushing content to the client(s) either in real-time or non-real-
time. This setting has been further discussed in Section 3.3.4, providing an
example. The RiWAs are generally supposed to handle both real-time and
non-real-time PC. Non-real-time PC requires using a database to save the
content to push later; hence, additional support from the database design and
development activities is necessary. Elements that handle real-time/non-real-
time TPC may need implementing logic to save and read push content into
and from the database as required.

4.1.4 Essential feature 1 — PC mode support

Different PC-enabled functionalities in a RiWA may be implemented using
different PC modes (refer to Section 3.3.2 for PC modes). For example, a chat
application may allow users to chat with a single person based on unicast, chat

530 N. R. Dissanayake et al.

with all the members in a group based on broadcast, or even chat with some
selected members in the group based on multicast. There should be necessary
elements to support implementing functionalities using different PC modes in
RiWAs. Moreover, a RiIWA should generally include elements to support all
the PC modes.

4.1.5 Essential feature 2 — push-DC connectors

The PC in RiWAs is supposed to be implemented in the form of DC. Since
push-DC is a type of communication, the PC-enabled RiWAs need dedicated
connectors in the client and server to communicate in the required push-
mode(s) using true push-DC. The server can then push content to the client(s)
via a server-connector, and the client(s) can capture the push-content through
a client-connector. To handle true push-DC, it is essential to have dedicated
connectors in both the server and the client. True push-DC development TTs
like WebSocket and supporting tools like libraries can be utilized to develop
these dedicated connectors.

4.1.6 Essential feature 3 — decision-making components for PC
This feature is related to support implementing real-time/non-real-time PC
and the push-modes upon triggering the push-events in the server. The server
required dedicated components to implement PC-related logic in PC-enabled
RiWAs. These components would decide aspects such as when the push-
events should be triggered, what push-mode to use, whether to execute in
real-time/non-real-time, and what data and structures to be pushed. These
components in the server can utilize the push connectors to push the content
to the client(s) based on PC-related logic. This feature is further discussed in
Section 4.2.3.

4.2 Step 2: Identify the Features to be Expected from a Style for
Push-communication Enabled RiWAs

This section proposes a set of features to be expected from a style for
PC-enabled RiWAs, in the direction of fulfilling OB3 of this paper while
achieving the aim of the paper. This discussion aligns with step 2 of the
requirements-setting process given in Section 1.3.1.

The crux of the common characteristics and essential features discussed
in the previous section is extracted and analyzed to formulate these features.
The rationale behind the notion of this discussion is that if a style exhibits
these features, it will support implementing the aforementioned common
characteristics and essential features in PC-enabled RiWAs.

Features for a Style for Push-communication Integrated 531

4.2.1 Feature 1 — true push-communication and
push-communication modes

A style for PC-enabled RiWAs should realize TPC from the server to the
client (refer to Section 3.3.1 for TPC) and all the PC modes (refer to
Section 3.3.2 for push-modes) based on TPC. The style will then sup-
port implementing the TPC-enabled features using the required mode(s).
This feature covers the common characteristic 1 and essential feature 1 for
PC-enabled RiWAs.

Since the ongoing research focuses on extending the RiWAArch style to
realize TPC, it is considered that the push-simulation is already realized by
the RiWA Arch style, as the style firmly realizes pull-DC.

4.2.2 Feature 2 - push-DC handling in server and client

There should be a comprehensive dedicated set of connectors to process push-
DC on the server and client sides of RiWAs. The inclusion of a complete set
of push-DC connectors to a style would enable the style to deliver essential
feature 2 of the PC-enabled RiWAs (refer to Section 4.1.5). Dedicated push-
DC connectors will improve the simplicity and visibility of a style, which
can increase the system’s evolvability. Hence, rapidly evolving RiWAs would
benefit from a set of push-DC connectors which can perform TPC.

4.2.3 Feature 3 — PC related decision making

A component is needed in the server to implement logic to take PC-related
decisions. These decisions are associated with PC-related aspects like push-
mode, mentioned under essential feature 3 in Section 4.1.6.

For example, when an author publishes an article, consider that a notifi-
cation must be sent to the readers who have subscribed to the author. The
notification may contain the title of the article and the author’s name. If
some subscribed readers are offline, the notification should be delivered when
they are online again. Based on these requirements, it can be understood
that a component should contain the logic to decide who should be notified
(based on the push-mode), the content of the notification, and other related
matters like real-time/non-real-time notification. It should be noted that the
push-event is triggered in the server as a part of the author’s publishing
process, and the author is not explicitly notifying the readers. Hence, the
component(s) dedicated to making PC-related decisions are supposed to
trigger the push-events in the server to perform TPC.

Based on PC-related case studies, similar to the above example, the
following aspects are identified to be taken care of by a dedicated

532 N. R. Dissanayake et al.

decision-making component in the server.

* Trigger push-events in the server based on the requirements of other
processors.

* Decide the content and the structures to be pushed.

* Decide to whom the content should be pushed based on the push-mode.

* Handle real-time vs. non-real-time push.

* Saving pushed content and related meta-data for persistence as required.

Suppose a style for PC-enabled RiWAs supports implementing a ded-
icated PC-related decision-making element(s), in that case, it will support
developing common characteristics 2 and 3 and implementing essential
feature 1 based on essential feature 3.

4.2.4 Feature 4 — support the standard general functionalities of
RiWAs

A style for PC-enabled RiWAs should realize not only the common character-
istics and essential features identified in the context of TPC-enabled RiWAs
but also the general characteristics and features of the standard RiWAs with
pull-DC [4]. It is required for a style for RiWAs to realize both pull and
push formalisms entirely since the PC-based features also benefit from pull-
DC and non-DC. For example, the chat feature page would be loaded to the
browser upon a standard HTTP request in the chat application scenario. When
a user sends a chat message to the server, it can be implemented using pull-
DC. Then the chat message is pushed to the target recipient(s) using true
push-DC.

The features of the RiWAArch style [4] realize the general characteristics
and features of the standard RiWAs based on pull-communication. This ongo-
ing research tries to extend the RiWAArch style to deliver the TCP-related
features discussed in this section. The resulting style is expected to realize
the RiWAs completely, including non-DC, pull-DC, and true push-DC.

5 Review of Available Styles for Push-communication
Enabled RiWAs

This section reviews the available architectural solutions that try to realize the
RiWAs. The review is based on the following criteria, which align with the
features proposed in Section 4.2. The architectural properties expected to be
satisfied by each criterion are indicated.

1. Specificity for RiWAs, therefore, realizes the common characteristics
of RiWAs. This research appreciates the abstraction of a solution by

Features for a Style for Push-communication Integrated 533

not depending on TTs. The abstraction improves the adoptability and
portability regardless of the development TTs.

2. Support for TPC. This criterion ensures scalability and performance.

3. Ability to realize PC modes. If the solution can realize many PC modes,
the adoptability of the solution is high.

4. Centralized push-DC handling in both client and server, using dedicated
connectors. This criterion safeguards simplicity and visibility in the
direction of increased evolvability.

5. Support push-DC integration with standard HTTP and pull-DC, improv-
ing performance, simplicity, and visibility.

5.1 jQuery-based Ajax General Interactive Architecture
(IAGA) [8]

The research by Li and Peng introduces an architecture for AJAX-based
RiWAs, named jJAGA. This solution focuses on the browser-based RiWAs,
and thus support for other types of RiWAs — like mobile apps — cannot be
guaranteed. As the name implies, this solution is based on jQuery and AJAX;
hence, not abstract. Since JAGA only targets browser-based RiWAs — limiting
the scope of the platform — and based on specific TTs, the portability and
adoptability are low.

Since this solution is based on AJAX, it supports only pull-based DC.
Therefore, support for TPC cannot be expected. However, push-simulation
techniques like XHR [35] based on polling or Comet can still be realized
by jJAGA. Even though Li and Peng state that “the utility of JAGA can
effectively reduce the work of code, cut down the difficulties of AJAX
realization, make the coding process simple and hierarchical and decrease
the chance of mistakes. What’s more, due to its reasonable design, jAGA
owns nice flexibility and scalable performance”, since TPC is not realized,
higher performance and scalability cannot be expected from jJAGA when
implementing PC-related features.

As PC is out of the scope of this research by Li and Peng, it does not
contain elements for push-DC handling and does not discuss how the PC
modes are realized.

5.2 A Component- and Push-based Architectural Style for AJAX
Applications [42]

In this research, Mesbah and Deursen introduce an architectural style
named Single Page Internet Application aRchitectural style (SPIAR style)

534 N. R. Dissanayake et al.

for single-paged browser-based RiWAs, which focuses more on the front-
end implementation; thus, SPIAR has a narrow scope. SPIAR style tries
to “minimize user-perceived latency and network usage, and improve data
coherence and ultimately user experience” [42]. The SPIAR style is based
on the characteristics of some available frameworks: Echo2, GWT (a web
framework offered by Google), Backbase (a commercial package delivered
by Backbase), cometd (a server-side push framework), and Dojo (a client-
side framework to work with cometd). The narrow scope and the TTs
dependencies of the SPIAR style make it not an abstract solution, limiting
the adoptability and portability.

As the paper’s name denotes, the context is based on AJAX applications.
It means that the SPIAR targets the systems which use XHR and request-
response model-based polling and Comet to implement PC. It confirms that
the SPIAR does not support TPC, and the scalability is lower than the TCP.

The SPIAR style does not explicitly realize the PC modes. By design,
the clients who need server updates have to subscribe to the server, and the
server updates are broadcasted to the subscribed clients. The clients subscribe
to the push server via an element named push client, and the push server
pushes the updates to the push client element, where the push client and
push server elements create a connector pair for push-DC. In the case of
pull-DC, the requests from the element named AJAX Engine, which is on
the client-side, are handled by an element named Decoder on the server-
side, and the responses are sent back to the AJAX engine by an element
named Encoder. Ajax Engine and the Encoder and Decoder create a set of
connectors for pull-DC. These connectors for pull and push DC enormously
improve the visibility and simplicity of the SPIAR style. However, the SPIAR
style does not depict how non-DC communication is integrated. Since the
SPIAR style targets single-page applications, standard HTTP communication
is eliminated after the first time the application loads its elements; therefore,
it does not require non-DC for page navigation once the application is
fully loaded to the browser. In this setting, SPIAR does not need to realize
non-DC integration as a style, and within its context, the SPIAR realizes
all the required types of communication well with intense simplicity and
visibility.

5.3 RiWAArch Style [4]

RiWA Arch style is an abstract style that realizes the common characteristics
and essential features of the general pull-communication-based RiWAs. Since

Features for a Style for Push-communication Integrated 535

it does not depend on specific TTs, the adoptability and portability are higher
than the other solutions.

Since the RiWAArch style realized the pull-DC, it only realizes the
push-simulation and does not realize TCP. Therefore, higher scalability and
performance similar to when using WebSocket cannot be expected. However,
it may realize the push-modes to implement with push-simulation TTs, which
should be further experimented.

The RiWAArch style has a comprehensive connector pair to implement
pull-DC, which improves simplicity and visibility. However, when imple-
menting push-simulation, the same connectors should be exploited, and it
may lower the simplicity and visibility compared to the RiWAs without PC.

When using the RiWAArch style, it can realize the integration of push-
simulation with non-DC and pull-DC. Still, as explained above, the simplic-
ity, visibility, and performance will not be at their highest compared to a
hypothetical style which can realize TCP.

6 Conclusion, Future Work, and Motivation

Using a requirements setting process to design a new software architectural
style (refer to Figure 1 in Section 1.3.1), this paper identifies the features of
PC in RiWAs (refer to Section 3.3) and then identifies common characteristics
and essential features for PC-enabled RiWAs (refer to Section 4.1). Based
on those identified common characteristics and essential features, the paper
suggests features to be expected from a style for PC-enabled RiWAs while
emphasizing TCP (refer to Section 4.2).

RiWAArch style is a comprehensive style which realizes the standard
RiWAs (reviewed in Section 5.3) [4]. Our ongoing research focuses on
extending the RIWA Arch style to realize the integration of TPC into RiWAs,
by delivering the features proposed in this paper. After that, we expect
to discuss adopting the new style into development by demonstrating the
development of a comprehensive set of PC-related functionalities through
a use case. This case study will be designed to discuss every aspect of the
introduced style, which extends the RiWAArch style. At the end of our
ongoing research, the introduced style will be evaluated with the help of
domain experts to validate the practicality and adoptability of the style.

Introducing a comprehensive abstract architectural style is advantageous
for PC-enabled RiWAs engineering. Architectural styles offer a framework
for designing system architectures [43], and styles can be considered an
abstract description of tried and tested good practices of the generic forms

536 N. R. Dissanayake et al.

of architecture [3]. In other words, styles provide a way to capture the
knowledge from successful software solutions in the past, and we can expect
the styles will also be successful in similar systems [43]. Since a style also
can provide an overall abstract picture of a system — similar to software
architecture — it can assist in realizing the system, which helps in reduc-
ing complexity [44], where the complexity in systems can be reduced by
increasing the understanding and improving the realization of the elements
and their configuration [45]. Moreover, the architecture acts as a bridge
from requirements to development; hence, the realization provided by an
architectural style will be able to assist the development activities directly
and also enhance some aspects like the reuse of code, the evolution of the
system, and management of the project [46]. Considering all these facts, we
can conclude that having an architectural style, which can realize a specific
set of constraints in targeted systems is advantageous in software engineering,
which is also true for RiWAs engineering.

RiWAs are already marked as the de facto standard in the web-based
environment due to the higher user experience they provide [1]. Regular
RiWAs may use only pull-DC to communicate with the server; however, with
trending features such as push notifications and real-time updates [22, 28],
RiWAs can benefit from push-DC. Hence, PC can be seen as a contem-
porary requirement for RiWAs. In this setting, the design and development
activities of PC-enabled RiWAs may require dedicated software engineering
methods. Considering the advantages mentioned above of architectural styles,
we can conclude that the PC-enabled RiWAs would benefit from a robust
and dedicated style, which can realize the integration of TPC into RiWAs,
hence, assist the rapid evolution of RiWAs via ample simplicity and visibility
provided by the style. We think that the features proposed in this paper (refer
to Section 4.2) to be expected from a style for PC-integrated RiWAs would
immensely assist in setting requirements to extend the RiWAArch style in
our ongoing research. The resulting style will be able to realize implementing
TCP using advanced TTs like WebSocket.

References

[1] N. R. Dissanayake and K. Dias, “Rich web-based applications: An
umbrella term with a definition and taxonomies for development tech-
niques and technologies,” International Journal of Future Computer and
Communication, vol. 7, no. 1, pp. 14-20, 2018.

Features for a Style for Push-communication Integrated 537

[2] N. R. Dissanayake and G. K. A. Dias, “Abstract concepts: A contem-
porary requirement for rich internet applications engineering,” in 9th
International Research Conference of KDU (KDU-IRC 9), Colombo, Sri
Lanka, 2016.

[3] I. Sommerville, Software Engineering. India: Dorling Kindersley, 2011.

[4] N. R. Dissanayake and K. Dias, “RiWAArch Style: An architectural
style for rich web-based applications,” in Proceedings of the 2020 Future
Technologies Conference (FTC), Canada, 2020.

[5] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures. Irvine: University of California, 2000.

[6] N. R. Dissanayake, D. Kasthurirathna, S. Jayalal, “Towards a style
for push-communication enabled rich web-based applications [presen-
tation],” in Colombo SIGCHI Research Showcase, Colombo, Sri Lanka,
2021.

[7] N. R. Dissanayake, D. Kasthurirathna, S. Jayalal, “Towards an abstract
style for true-push-communication enabled rich web-based applica-
tions [extended abstract],” in 21st International Conference on Advances
in ICT for Emerging Regions (ICTer), Colombo, Sri Lanka, 2021.

[8] J. Li and C. Peng, “jQuery-based Ajax general interactive architecture,”
in Software Engineering and Service Science (ICSESS), 2012 IEEE 3rd
International Conference, Beijing, 2012.

[9] Architech Solutions, The Importance of Software Architecture, Toronto,
Ontario: Architech Solutions, 2014.

[10] P. Oreizy, N. Medvidovic, R. N. Taylor, Architecture-Based Runtime
Software Evolution. Irvine: University of California 1998.

[11] J. Gustafsson, J. Paakki, L. Nenonen, I. Verkamo, “Architecture-centric
software evolution by software metrics and design patterns,” in Proceed-
ings of the Sixth European Conference on Software Maintenance and
Reengineering (CSMRi02), 2002.

[12] F. Cuadrado, B. Garcia, J. C. Duefias, H. A. Parada, “A case study
on software evolution towards service-oriented architecture,” in 22nd
International Conference on Advanced Information Networking and
Applications — Workshops, 2008.

[13] A. Mesbah and A. v. Deursen, “An architectural style for AJAX,’
in Software Architecture, 2007. WICSA °07. The Working IEEE/IFIP
Conference, Mumbai, 2007.

[14] N. R. Dissanayake and G. Dias, “Web-based applications: Extending
the general perspective of the service of web,” in [0th International
Research Conference of KDU (KDU-IRC 2017) on Changing Dynamics

538 N. R. Dissanayake et al.

in the Global Environment: Challenges and Opportunities, Rathmalana,
Sri Lanka, 2017.

[15] M. Busch and N. Koch, Rich Internet Applications — State-of-the-Art.
Munchen: Ludwig-Maximilians-Universitat, 2009.

[16] G. Lawton, “New ways to build rich internet applications,” Computer,
vol. 41, no. 8, pp. 10-12, Aug 2008.

[17] N. Koch, M. Pigerl, G. Zhang, T. Morozova, “Patterns for the model-
based development of RIAs,” in Springer ICWE, Heidelberg, 2009.

[18] N. R. Dissanayake and G. Dias, “Delta communication: The power of
the rich internet applications,” International Journal of Future Computer
and Communication, vol. 6, no. 2, pp. 31-36, 2017.

[19] J.J. Garrett, “Ajax: A New Approach to Web Applications,” 18 February
2005. [Online]. Available: http://www.adaptivepath.com/ideas/ajax-n
ew-approach-web-applications.

[20] M. Carbou, Reverse Ajax, Part 1: Introduction to Comet. IBM, 2011.

[21] L Fette, Google Inc, A. Melnikov, Isode Ltd., The WebSocket Protocol.
Internet Engineering Task Force, 2011.

[22] N. R. Dissanayake, D. Kashthurirathna, S. Jayalal, “Evolution of push-
communication towards the rich web-based applications,” in Proceed-
ings of FTC 2020, Canada, 2020.

[23] R. M. Metcalfe and D. R. Boggs, Ethernet: Distributed Packet Switching
for Local Computer Networks. California: Xerox Palo Alto Research
Center, 1975.

[24] J.-M. Chang and N. F. Maxemchuk, “Reliable broadcast protocols,”
ACM Transactions on Computer Systems, vol. 2, no. 3, pp. 251-273,
1984.

[25] S. Technologies, A Survey of the History of Internet Multicast. Star-
dust.com, Inc., 1999.

[26] S. Ramakrishnan and V. Dayal, “The PointCast network,” in Pro-
ceedings of the 1998 ACM SIGMOD international Conference on
Management of Data, 1998.

[27] cnet, “PointCast unveils free news service,” cnet, 13 02 1996. [Online].
Available: https://www.cnet.com/news/pointcast-unveils-free-news-ser
vice/. [Accessed 26 11 2018].

[28] M. Pielot and L. Rello, “Productive, anxious, lonely — 24 hours without
push notifications,” in MobileHCI 17, Vienna, Austria, 2017.

[29] Techopedia, Push Technology. Techopedia Inc., 2012.

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
https://www.cnet.com/news/pointcast-unveils-free-news-service/
https://www.cnet.com/news/pointcast-unveils-free-news-service/

Features for a Style for Push-communication Integrated 539

[30] M. Thomson, Mozilla, E. Damaggio, E. B. Raymor, Microsoft, “WEB-
PUSH - Generic Event Delivery Using HTTP Push draft-ietf-webpush-
protocol-12,” Internet-Draft, 2016.

[31] W3C, “Push API - W3C Working Draft 04 February 2020,” W3C, 2020.

[32] R. C. Sofia and P. M. Mendes, “An overview on push-based commu-
nication models for information-centric networking,” Future Internet,
vol. 11, no. 3, Mar 2019.

[33] M. Belshe, Bitgo, R. Peon, 1. Google, E. M. Thomson, Mozilla, Hyper-
text Transfer Protocol Version 2 (HTTP/2). Internet Engineering Task
Force (IETF), 2015.

[34] M. Thomson, Mozilla, E. Damaggio, E. B. Raymor, and Microsoft,
“Generic Event Delivery Using HTTP Push draft-ietf-webpush-
protocol-12,” 2016.

[35] Web Hypertext Application Technology Working Group (WHATWG),
“XMLHttpRequest Living Standard,” 19 October 2015. [Online]. Avail-
able: https://xhr.spec.whatwg.org/. [Accessed 03 November 2015].

[36] M. Franklin and S. Zdonik, ““Data in your face”: Push technology in
perspective,” in SIGMOD ’98 Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, Seattle, Washington,
USA, 1998.

[37] J. T.-S. Quah and G. L. Lim, “Push selling — multicast messages to wire-
less devices based on publish/subscribe model,” Electronic Commerce
Research and Applications, vol. 1, no. 3-4, pp. 235-246, 2002.

[38] I. Hickson, “Server-Sent Events,” 3 Feruary 2015. [Online]. Available:
http://www.w3.org/TR/eventsource/. [Accessed 15 May 2015].

[39] N. R. Dissanayake and G. K. A. Dias, “Essential features a general
AJAX rich internet application architecture should have in order to
support rapid application development,” International Journal of Future
Computer and Communication, vol. 3, no. 5, pp. 350-353, 2014.

[40] “Ratchet,” Ratchet, 2020. [Online]. Available: http://socketo.me/.
[Accessed 15 May 2020].

[41] N. R. Dissanayake and G. Dias, “A comparison of delta-communication
technologies and techniques,” in 10th International Research Confer-
ence of KDU (KDU-IRC 2017) on Changing Dynamics in the Global
Environment: Challenges and Opportunities, Rathmalana, Sri Lanka,
2017.

[42] A. Mesbah and A. v. Deursen, “A component- and push-based architec-
tural style for AJAX applications,” The Journal of Systems and Software,
vol. 81, pp. 2194-2209, 2008.

https://xhr.spec.whatwg.org/
http://www.w3.org/TR/eventsource/
http://socketo.me/

540 N. R. Dissanayake et al.

[43] D. M. Selfa, M. Carrillo, M. d. R. Boone, “A database and web
application based on MVC architecture,” in Electronics, Communica-
tions and Computers, 2006. CONIELECOMP 2006. 16th International
Conference, 2006.

[44] D. Hough, “Rapid Delivery: An eveolutionary approach for application
development,” IBM System Journal, vol. 32, no. 3, pp. 397-419, 1993.

[45] H. Zuse, Software Complexity Measures and Models. New York: de
Gruyter & Co., 1992.

[46] M. H. Valipour, B. Amirzafari, K. N. Maleki, N. Daneshpour, “A
brief survey of software architecture concepts and service oriented
architecture,” in /EEE, Beijing, 2009.

Biographies

Nalaka R. Dissanayake received a B.Sc. degree in information technology
from the Sri Lanka Institute of Information Technology in 2007 and an
M.Phil. degree from the University of Colombo School of Computing in
2017. He is currently reading for a Ph.D. at the Sri Lanka Institute of
Information Technology, Sri Lanka.

From 2007 to 2023, he worked as a student instructor, instructor, assistant
lecturer, software designer, and senior lecturer in various institutes. He has
authored over 30 peer-reviewed conference papers and 3 journal papers.
His research interests include software architecture, design patterns, web
engineering, and rich internet applications. He has contributed to the domain
of web engineering by introducing architectural styles, design patterns, and
terms and definitions for some concepts related to rich web-based applica-
tions. He has also served as a reviewer of some conferences in Sri Lanka.

Features for a Style for Push-communication Integrated 541

Dharshana Kasthurirathna graduated from the Department of Computer
Science & Engineering, University of Moratuwa, in 2004. He has over 7
years of experience in the ICT industry as a software engineer and a research
engineer. He obtained his master’s degree in computing from the University
of Colombo, School of Computing, in 2011 and his Ph.D. in Complex
Systems from the Faculty of Engineering & IT, University of Sydney, in 2016.
His research interests include complex systems, network science, computa-
tional game theory, machine learning and distributed computing.

Shantha Jayalal received his Ph.D. in Computer Science from Keele Uni-
versity in the United Kingdom in 2006. He holds a Postgraduate Diploma in
Computer Science from the University of Colombo and a bachelor’s degree in
industrial management from the University of Kelaniya, Sri Lanka. Currently,
he is a Senior Lecturer in the Department of Industrial Management, Faculty
of Science of the University of Kelaniya, Sri Lanka. His research interests are
in web engineering, semantic web, data science and machine learning.

	Introduction
	Research Problem and Motivation
	Research Aim, Hypothesis, and Objectives
	Methodology
	Identification of the features to expect from a style for TPC-enabled RiWAs
	Review of available styles

	Structure of the Paper

	Background
	Software Architecture and Architectural Styles
	Rich Web-based Applications and Delta-communication

	Understand the Features of Push-communication
	Basics of Push-communication
	Integrate Push-communication into RiWAs
	Features of Push-communication in Rich Web-based Applications
	Push-simulation vs. true push-communication
	Push-communication styles/modes
	Server-event-driven
	Real-time vs. non-real-time push-communication

	Features to Expect from a Push-communication Integrated Style for Rich Web-based Applications
	Step 1: Identify Common Characteristics and Essential Features for Push-communication Enabled RiWAs
	Common characteristic 1 – push-simulation vs. true push-communication
	Common characteristic 2 – push-events in server
	Common characteristic 3 – real-time vs. non-real-time
	Essential feature 1 – PC mode support
	Essential feature 2 – push-DC connectors
	Essential feature 3 – decision-making components for PC

	Step 2: Identify the Features to be Expected from a Style for Push-communication Enabled RiWAs
	Feature 1 – true push-communication and push-communication modes
	Feature 2 – push-DC handling in server and client
	Feature 3 – PC related decision making
	Feature 4 – support the standard general functionalities of RiWAs

	Review of Available Styles for Push-communication Enabled RiWAs
	jQuery-based Ajax General Interactive Architecture (jAGA) [8]
	A Component- and Push-based Architectural Style for AJAX Applications [42]
	RiWAArch Style [4]

	Conclusion, Future Work, and Motivation

