A Hybrid Recommendation Integrating Semantic Learner Modelling and Sentiment Multi-Classification
DOI:
https://doi.org/10.13052/jwe1540-9589.2141Keywords:
Hybrid Recommendation, Semantic User Modeling, Contextual Graph, Sentiment Analysis, Word Embeddings, Deep LearningAbstract
Enhancing virtual learning platforms need to adapt new intelligent mechanisms so that long-term learner experience can be improved. Sentiment Analysis gives us perception on how a specific scientific material is suitable to be recommended to the learner. It depends on the feedback of a similar learner taking many factors under consideration such as preference, knowledge level, and learning pattern. In this work, a hybrid e-learning recommendation system is proposed based on individualization and Sentiment Analysis. A new approach is provided for modelling the semantic user model based on the generated semantic matrix to capture the learner’s preferences based on their selections of interest. The extracted semantic matrix is used for text representation by utilizing ConceptNet knowledge base which relies on contextual graph and expanded terms to represent the correlation among terms and materials. On the extracted terms from semantic user model, Word Embeddings-Based-Sentiment Analysis (WEBSA) must recommend the learning materials with highest rating to the learners properly. Variant models of (WEBSA) are proposed relying on Natural Language Processing (NLP) to generate effective vocabulary representations along with the use of qualitative customized Convolutional Neural Network (CNN) for sentiment multi-classification tasks. To validate the language model, two datasets are used, a tailored dataset that has been created by scraping reviews of different e-learning resources, and a public dataset. From the experimental results, it has been found that the lowest error rate is achieved with our customized dataset, where the model named CNN-Specific-Task-CBOWBSA outperforms than others with 89.26% accuracy.
Downloads
References
K. Mangaroska, M. Giannakos, ‘learning analytics for learning design: A systematic literature review of analytics-driven design to enhance learning’, IEEE Transactions on Learning Technologies, 12(4), 516–534, 2018.
V. Kubik, R. Gaschler, H. Hausman, PLAT 20 (1) 2021: Enhancing Student Learning in Research and Educational Practice, The Power of Retrieval Practice and Feedback, 2021.
S. Benzarti, R. Faiz, EgoTR: Personalized tweets recommendation approach. In Computer Science On-line Conference, pp. 227–238, 2015. Springer, Cham. https://doi.org/10.1007/978-3-319-18503-3_23
L. Boratto, S. Carta, G. Fenu, R. Saia, Semantics-aware content-based recommender systems: Design and architecture guidelines. Neurocomputing, 254, 79–85, 2017. https://doi.org/10.1016/j.neucom.2016.10.079.
Y. Kim, K. Shim, TWILITE: A recommendation system for Twitter using a probabilistic model based on latent Dirichlet allocation. Information Systems, 42, 59–77, 2014. Doi: 10.1016/j.is.2013.11.003.
W. Cui, Y. Du, Z. Shen, Y. Zhou, J. Li, Personalized microblog recommendation using sentimental features. In 2017 IEEE International Conference on Big Data and Smart Computing (BigComp) pp. 455–456, 2017. IEEE. Doi: 10.1109/BIGCOMP.2017.7881756.
X. Zhou, S. Wu, C. Chen, G. Chen, S. Ying, Real-time recommendation for microblogs. Information Sciences, 279, 301–325, 2014. Doi: 10.1016/j.ins.2014.03.121.
H. Ezaldeen, R. Misra, R. Alatrash, R. Priyadarshini, Semantically enhanced machine learning approach to recommend e-learning content. International Journal of Electronic Business, 15(4), 389–413, 2020. https://doi.org/10.1504/IJEB.2020.111095.
F. Abel, Q. Gao, G J. Houben, K. Tao, Semantic enrichment of twitter posts for user profile construction on the social web. In Extended semantic web conference pp. 375–389, 2011, May. Springer, Berlin, Heidelberg. Doi: 10.1007/978-3-642-21064-8_26.
V. de Graaff, A. van de Venis, M. van Keulen, A. Rolf, Generic knowledge-based Analysis of Social Media for Recommendations. In CBRecSys@ RecSys, pp. 22–29, 2015, September.
G. Piao, J G. Breslin, Exploring dynamics and semantics of user interests for user modeling on Twitter for link recommendations. In proceedings of the 12th international conference on semantic systems pp. 81–88, 2016, September. Doi: 10.1145/2993318.2993332.
M. Keshavarz, Y H. Lee, Ontology matching by using ConceptNet. In Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference Vol. 2012, pp. 1917–1925, 2012.
R. Speer, J. Chin, C. Havasi, Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence Vol. 31, No. 1, 2017, February.
Z. Han, J. Wu, C. Huang, Q. Huang, M. Zhao,:A review on sentiment discovery and analysis of educational big-data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(1), e1328, 2020.
K. Mite-Baidal, C. Delgado-Vera, E. Solís-Avilés, A H. Espinoza, J. Ortiz-Zambrano, E. Varela-Tapia, Sentiment analysis in education domain: A systematic literature review. In International Conference on Technologies and Innovation pp. 285–297, 2018, November. Springer, Cham. https://doi.org/10.1007/978-3-030-00940-3_21.
A. ONAN, Sentiment analysis on massive open online course evaluations: A text mining and deep learning approach. Computer Applications in Engineering Education, 2020. https://doi.org/10.1002/cae.22253.
R. Cobos, F. Jurado, A. Blázquez-Herranz, A Content Analysis System that supports Sentiment Analysis for Subjectivity and Polarity detection in Online Courses. IEEE Revista Iberoamericana de Tecnologías Del Aprendizaje, 14(4), 177–187, 2019. Doi: 10.1109/RITA.2019.2952298.
A. Magdy, L. Abdelhafeez, Y. Kang, E. Ong, M F. Mokbel, Microblogs data management: a survey. The VLDB Journal, 29(1), 177–216, 2020.
M L B. Estrada, R Z. R O. Cabada, Bustillos, M. Graff, Opinion mining and emotion recognition applied to learning environments. Expert Systems with Applications, 150, 113265, 2020. https://doi.org/10.1016/j.eswa.2020.113265.
N. Kiuru, B. Spinath, A L. Clem, K. Eklund, T. Ahonen, R. Hirvonen, The dynamics of motivation, emotion, and task performance in simulated achievement situations. Learning and Individual Differences, 80, 101873, 2020. https://doi.org/10.1016/j.lindif.2020.101873.
C. Salazar, J. Aguilar, J. Monsalve-Pulido, E. Montoya, Affective recommender systems in the educational field. A systematic literature review. Computer Science Review, 40, 100377, 2021.
Y. Kim, Convolutional Neural Networks for Sentence Classification. 2014r08r25, 2014. https://arxiv.org/abs/1408.5882.
R. Johnson, T. Zhang, Semi-supervised convolutional neural networks for text categorization via region embedding. Advances in neural information processing systems, 28, 919, 2015.
A. Conneau, H. Schwenk, L. Barrault, Y. Lecun, Very deep convolutional networks for natural language processing, 2016. arXiv preprint arXiv:1606.01781, 2, 1.
R. Alatrash, H. Ezaldeen, R. Misra, R. Priyadarshini, Sentiment Analysis Using Deep Learning for Recommendation in E-Learning Domain. Progress in Advanced Computing and Intelligent Engineering: Proceedings of ICACIE 2020, 123, 2020. https://doi.org/10.1007/978-981-33-4299-6_10.
Y. Shen, X. He, J. Gao, L. Deng, G. Mesnil, Learning semantic representations using convolutional neural networks for web search. In Proceedings of the 23rd international conference on world wide web, pp. 373–374, 2014, April. https://doi.org/10.1145/2567948.2577348.
N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modelling sentences, 2014. arXiv preprint arXiv:1404.2188. http://arxiv.org/abs/1404.2188.
W T. Yih, X. He, C. Meek, Semantic parsing for single-relation question answering. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) pp. 643–648, 2014, June.
R. Collobert, J.Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost) from scratch. Journal of machine learning research, 12(ARTICLE), 2493–2537, 2011.
N. Shrestha, F. Nasoz, Deep learning sentiment analysis of amazon. com reviews and ratings, 2019. arXiv preprint arXiv:1904.04096.
K S. Srujan, S S. Nikhil, H R. Rao, K. Karthik, B S. Harish, H K. Kumar, Classification of amazon book reviews based on sentiment analysis. In Information Systems Design and Intelligent Applications pp. 401–411, 2018. Springer, Singapore. https://doi.org/10.1007/978-981-10-7512-4_40.
X. Zhang, J. Zhao, Y. LeCun, Character-level convolutional networks for text classification, 2015. arXiv preprint arXiv:1509.01626.
A M. Qamar, M. Alassaf, Improving Sentiment Analysis of Arabic Tweets by One-Way ANOVA. Journal of King Saud University-Computer and Information Sciences, 2020. https://doi.org/10.1016/j.jksuci.2020.10.023.
R. Kumar, H S. Pannu, A K. Malhi, Aspect-based sentiment analysis using deep networks and stochastic optimization. Neural Computing and Applications, 32(8), pp. 3221–3235, 2020. https://doi.org/10.1007/s00521-019-04105-z.
T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, 2013. arXiv preprint arXiv:1301.3781.
T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed representations of words and phrases and their compositionality, 2013. arXiv preprint arXiv:1310.4546.
E.C. Too, L. Yujian, P.K. Gadosey, S. Njuki, F. Essaf, Performance analysis of nonlinear activation function in convolution neural network for image classification. International Journal of Computational Science and Engineering, 21(4), pp. 522–535, 2020.
G E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, 2012. arXiv preprint arXiv:1207.0580.
J. Moravec, A Comparative Study: L1-Norm Vs. L2-Norm; Point-to-Point Vs. Point-to-Line Metric; Evolutionary Computation Vs. Gradient Search. Applied Artificial Intelligence, 29(2), 164–210, 2015.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929–1958, 2014.
R. Alatrash, H. Ezaldeen, rawaa123/Dataset GitHub Retrieved from https://github.com/rawaa123/Dataset/, 2021.
P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135–146, 2017. https://doi.org/10.1162/tacl_a_00051.
R. Socher, A. Perelygin, J. Wu, J. Chuang, C D. Manning, A Y. Ng, C. Potts, Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1631–1642, 2013, October.
D P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014. arXiv preprint arXiv:1412.6980.
H. Ezaldeen, R. Misra, R. Alatrash, R. Priyadarshini, Machine Learning Based Improved Recommendation Model for E-learning. In 2019 International Conference on Intelligent Computing and Remote Sensing (ICICRS) (pp. 1–6). IEEE. https://doi.org/10.1109/ICICRS46726.2019.9555866.
X. Ouyang, P. Zhou, C.H. Li, L. Liu, Sentiment analysis using convolutional neural network. In: 2015 IEEE international conference on computer and information technology; ubiquitous computing and communications; dependable, autonomic and secure computing; pervasive intelligence and computing (CIT/ IUCC/DASC/PICOM). IEEE, 2015, pp. 2359–2364. https://doi.org/10.1109/CIT/IUCC/DASC/PICOM.2015.349
B. Pang, L. Lee “Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales,” In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, pp. 115–124, 2005.
J. Pennington, R. Socher, and C. D. Manning, Glove: Global vectors for word representation. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 1532–1543) (2014, October).
M. Abbasi, G. Montazer, F. Ghrobani, and Z. Alipour, Categorizing E-Learner Attributes in Personalized E-learning Environments: A Systematic Literature Review. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 12(1), 1–21 (2021).
A. Nandi, F. Xhafa, L. Subirats, and S. Fort, Real-time emotion classification using eeg data stream in e-learning contexts. Sensors, 21(5), 1589, (2021). DOI: https://doi.org/10.3390/s21051589.
N. Mejbri, F. Essalmi, M. Jemni, and B. A. Alyoubi, Trends in the use of affective computing in e-learning environments. Education and Information Technologies, 1–23 (2021). DOI: https://doi.org/10.1007/s10639-021-10769-9.
V. Sanh, L. Debut, J. Chaumond, and T. Wolf, DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, (2019). arXiv preprint arXiv:1910.01108.
Priyadarshini, R., Barik, R. K., and Dubey, H. (2018). Deepfog: Fog computing-based deep neural architecture for prediction of stress types, diabetes and hypertension attacks. Computation, 6(4), 62.
R. Priyadarshini, R. K. Barik, C. Panigrahi, H. Dubey, and B. K. Mishra, An investigation into the efficacy of deep learning tools for big data analysis in health care. In Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications (pp. 654–666). IGI Global, (2020).
R. Priyadarshini, R. K. Barik, H. Dubey. “Fog-SDN: A light mitigation scheme for DDoS attack in fog computing framework.” International Journal of Communication Systems 33, no. 9 (2020): e4389.