Federated Learning-Based Privacy Preservation with Blockchain Assistance in IoT 5G Heterogeneous Networks
DOI:
https://doi.org/10.13052/jwe1540-9589.21414Keywords:
Blockchain, 5G network, federated machine, privacy preservation, registration.Abstract
In the area where privacy is of greater concern, federated learning,a distributed machine learning strategy for preserving privacy,is widely employed in several privacy concern applications. In the meantime, neural architectures became familiar with deep learning approaches for automatic tuning of the architecture of deep neural networks (DNN). While searching with neural architecture and federated learning has experienced several challenges, optimized neural architecture research in federated learning is extensively on demand. DNN faces numerous issues while training such user privacy and ensuring the integrity of the aggregated results obtained from a server. To provide solutions for the above-mentioned issues, enormous federated learning techniques worked towards preserving privacy and were applied in different situations. Still, it is an open challenge that enables users to verify if the cloud server functions appropriately while ensuring users’ privacy while training. Federated Learning Method is a new way to improve the accuracy and precision, since the previous approach failed to opt the solutions. Here, Elliptical Curve Cryptography with Blockchain-based Federated Learning (ECC-BFL)is proposed to ensure the confidentiality of users’ local gradients while performing federated learning. The parameters such as classification accuracy, running time, Communication overhead, Computation overhead, and transaction speed are considered. The values obtained for these parameters are compared against three standard methods, namely Biparing Method (BM) Homomorphic Cryptosystem (HC), and Multiple Authorities with Attribute-Based Signature scheme (MA-ABS)against proposed Elliptical Curve Cryptography with Blockchain-based Federated Learning (ECC-BFL). As a result, the proposed ECC-BFL achieved 95% of classification accuracy, 65 sec of running time, 76% of communication overhead, 63% of computation overhead, and 92% of transaction speed.
Downloads
References
Aledhari, M., Razzak, R., Parizi, R. M., and Saeed, F. (2020). Federated learning: A survey on enabling technologies, protocols, and applications. IEEE Access, 8, 140699–140725.
Cabaj, K., Caviglione, L., Mazurczyk, W., Wendzel, S., Woodward, A., and Zander, S. (2018). The new threats of information hiding: The road ahead. IT professional, 20(3), 31–39.
Dagher, G. G., Mohler, J., Milojkovic, M., and Marella, P. B. (2018). Ancile: Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology. Sustainable cities and society, 39, 283–297.
Guo, R., Shi, H., Zhao, Q., and Zheng, D. (2018). Secure attribute-based signature scheme with multiple authorities for blockchain in electronic health records systems. IEEE access, 6, 11676–11686.
Liu, Y., Huang, A., Luo, Y., Huang, H., Liu, Y., Chen, Y., … & Yang, Q. (2020, April). Fedvision: An online visual object detection platform powered by federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 08, pp. 13172–13179).
Liu, Y., James, J. Q., Kang, J., Niyato, D., and Zhang, S. (2020). Privacy-preserving traffic flow prediction: A federated learning approach. IEEE Internet of Things Journal, 7(8), 7751–7763.
Lu, Y., Huang, X., Zhang, K., Maharjan, S., and Zhang, Y. (2020). Blockchain empowered asynchronous federated learning for secure data sharing on internet of vehicles. IEEE Transactions on Vehicular Technology, 69(4), 4298–4311.
Miers, I., Garman, C., Green, M., and Rubin, A. D. (2013, May). Zerocoin: Anonymous distributed e-cash from bitcoin. In 2013 IEEE Symposium on Security and Privacy (pp. 397–411). IEEE.
Niknam, S., Dhillon, H. S., and Reed, J. H. (2020). Federated learning for wireless communications: Motivation, opportunities, and challenges. IEEE Communications Magazine, 58(6), 46–51.
Ning, Z., Dong, P., Wang, X., Rodrigues, J. J., and Xia, F. (2019). Deep reinforcement learning for vehicular edge computing: An intelligent offloading system. ACM Transactions on Intelligent Systems and Technology (TIST), 10(6), 1–24.
Patel, V. (2019). A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health informatics journal, 25(4), 1398–1411.
Sampathkumar, A., and Vivekanandan, P. (2019). Gene selection using parallel lion optimization method in microarray data for cancer classification. Journal of Medical Imaging and Health Informatics, 9(6), 1294–1300.
Sampathkumar, A., Maheswar, R., Harshavardhanan, P., Murugan, S., Jayarajan, P., and Sivasankaran, V. (2020, July). Majority Voting based Hybrid Ensemble Classification Approach for Predicting Parking Availability in Smart City based on IoT. In 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1–8). IEEE.
Servos, D., and Osborn, S. L. (2017). Current research and open problems in attribute-based access control. ACM Computing Surveys (CSUR), 49(4), 1–45.
Sultana, N., Chilamkurti, N., Peng, W., and Alhadad, R. (2019). Survey on SDN based network intrusion detection system using machine learning approaches. Peer-to-Peer Networking and Applications, 12(2), 493–501.
Sun, G., Sun, S., Sun, J., Yu, H., Du, X., and Guizani, M. (2019). Security and privacy preservation in fog-based crowd sensing on the internet of vehicles. Journal of Network and Computer Applications, 134, 89–99.
Wang, X., Han, Y., Leung, V. C., Niyato, D., Yan, X., and Chen, X. (2020). Convergence of edge computing and deep learning: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(2), 869–904.
Wu, H. T., and Tsai, C. W. (2018). Toward blockchains for healthcare systems: Applying the bilinear pairing technology to ensure privacy protection and accuracy in data sharing. IEEE Consumer Electronics Magazine, 7(4), 65–71.
Xu, C., Lin, H., Wu, Y., Guo, X., and Lin, W. (2019). An SDNFV-based DDoS defense technology for smart cities. IEEE Access, 7, 137856–137874.
Yue, X., Wang, H., Jin, D., Li, M., and Jiang, W. (2016). Healthcare data gateways: found healthcare intelligence on blockchain with novel privacy risk control. Journal of medical systems, 40(10), 1–8.
Zhang, K., Long, J., Wang, X., Dai, H. N., Liang, K., and Imran, M. (2020). Lightweight searchable encryption protocol for industrial internet of things. IEEE Transactions on Industrial Informatics.
Zhang, L., Wu, Q., Domingo-Ferrer, J., Qin, B., and Hu, C. (2016). Distributed aggregate privacy-preserving authentication in VANETs. IEEE Transactions on Intelligent Transportation Systems, 18(3), 516–526.
Zhao, J., Chen, Y., and Zhang, W. (2019). Differential privacy preservation in deep learning: Challenges, opportunities and solutions. IEEE Access, 7, 48901–48911.