Traceability Management of Systems of Systems: A Systematic Review in the Assisted Reproduction Domain


  • Leticia Morales Trujillo University of Seville, Escuela Técnica Superior de Ingeniería Informática, Web Engineering and Early Testing (IWT2) group Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
  • Julián Alberto García University of Seville, Escuela Técnica Superior de Ingeniería Informática, Web Engineering and Early Testing (IWT2) group Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
  • David Lizcano Universidad a Distancia de Madrid (UDIMA), Madrid, Spain
  • Manuel Mejías University of Seville, Escuela Técnica Superior de Ingeniería Informática, Web Engineering and Early Testing (IWT2) group Avda. Reina Mercedes s/n. 41012 Sevilla, Spain


Systematic Literature Review, Systems of Systems, Biological Sample Management, Assisted Reproductive Treatment


Over last decade, Assisted Reproductive Treatment (ART) has become a very used health service by more and more people around the world because of problems such as the delay in the maternity age, single-parent couples, etc. In this context, health agencies have performed innovations to improve healthcare processes of ARTs, to optimize the performance of health professionals who work in fertilization laboratories and to improve Biological Sample Management (BSM) and sample traceability in ART. However, there are important handicaps in ART processes from the point of view of quality, safety and management. On the one hand, these processes are mainly based on manual execution tasks and manual control tasks. This excess of manual tasks could lead to fatal traceability and safety errors during BSM. On the other hand, ART processes require real, interoperable and traceable communications between different software systems that have to collaborate together (health information systems, biological sample management systems, patient management systems, etc.), but, at present, it is possible to identify some limitations in this domain, that is, the domain of systems of systems (SoS). This paper aims to conduct an exhaustive study was carried out both in the research community and in the commercial field to identify and analyze SoS solutions and theoretical proposals for BSM in ART processes. We have applied the Systematic Literature Review (SLR) methodology to carry out our study and we conclude it is a very young research line that shows a growing trend and that in the actuality there are very few technologies that deal with the problem of the BSM in ART.After analyzing the results, this paper presents as future work an initial Model-Driven conceptual solution to improve BSM in ART.


Download data is not yet available.

Author Biographies

Leticia Morales Trujillo, University of Seville, Escuela Técnica Superior de Ingeniería Informática, Web Engineering and Early Testing (IWT2) group Avda. Reina Mercedes s/n. 41012 Sevilla, Spain

Leticia Morales Trujillo holds a Bachelor’s Degree in Health Engineering with a mention in Biomedical Engineering from the University of Seville since 2016 and a Master’s Degree in Software Engineering and Technology from the University of Seville since 2018. Since 2016 researcher associated to the research group of Web Engineering and Early Testing (IWT2), belonging to the Department of Languages and Computer Systems of the University of Seville. Currently, she is enrolled in the doctoral program 2018-2019 of the University of Seville. At the researcher level he has participated in several research projects at a national level. Among its most important research results are several contributions to national and international conferences and publications in JCR journals.

Julián Alberto García, University of Seville, Escuela Técnica Superior de Ingeniería Informática, Web Engineering and Early Testing (IWT2) group Avda. Reina Mercedes s/n. 41012 Sevilla, Spain

Julián Alberto García was awarded his PhD in Computer Science by the University of Seville, Spain, in 2015. Since 2008, he has participated in R&D projects as a researcher in the Web Engineering and Early Testing Group (IWT2). Her current research interests include the areas of property engineering, Business Process Management (BPM), Model-Driven Engineering and quality assurance. Julian is responsible for the BPM area and responsible for security of in IWT2. He is lecture in the University of Sevilla (Spain) and manages several technological transfer projects with companies and he participates as a member comitee in several international congresses and journals.

David Lizcano, Universidad a Distancia de Madrid (UDIMA), Madrid, Spain

David Lizcano holds a Ph.D. in Computer Science (2010) and a M.Sc. in Research in Complex Software Development (2008) from the Universidad Politécnica de Madrid, UP. He is Professor at Madrid Open University, UDIMA. He held a research grant from the European Social Fund, and was involved in several national and European-funded projects relating to service-oriented architectures, programming paradigms, software engineering, human-computer interaction and end-user development. He has published his research in more than 30 high-ranking JCR-indexed journals.

Manuel Mejías, University of Seville, Escuela Técnica Superior de Ingeniería Informática, Web Engineering and Early Testing (IWT2) group Avda. Reina Mercedes s/n. 41012 Sevilla, Spain

Manuel Mejías was awarded his Ph.D in Industrial Engineering by the University of Seville, Spain, in 1997. He has been a lecturer at this university since 1987, where he is currently a lecturer and researcher. He has been several years teaching and researching in the field of Software Engineering. His current lines of research are plotted in the areas of methodological issues in software process, quality assurance and reference models in software production.


Van-der-Aalst, W. M. P. Business process management: a personal view. Business Process Management Journal, vol. 10, no. 2, p. 5, 2004.

Zegers-Hochschild, F., Adamson, G. D., de Mouzon, J., Ishihara, O., Mansour, R., Nygren, K., ... & Van der Poel, S. (2009). The international committee for monitoring assisted reproductive technology (ICMART) and the world health organization (WHO) revised glossary on ART terminology, 2009. Human reproduction, 24(11), 2683–2687.

Matzuk, M. M., & Lamb, D. J. (2008). The biology of infertility: research advances and clinical challenges. Nature medicine, 14(11), 1197.

Skakkebaek, N. E., Rajpert-De Meyts, E., Buck Louis, G. M., Toppari, J., Andersson, A. M., Eisenberg, M. L., ... & Ziebe, S. (2015). Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiological reviews, 96(1), 55–97.

El mundo, El 8,6% de los niños nacen en España gracias a técnicas de reproducción asistida. Website: ncia-y-salud/salud/2017/10/11/59ddebb0ca474103188b45a1.html (accessed February, 2019).

Brezina, P. R., Ning, N., Mitchell, E., Zacur, H. A., Baramki, T. A., & Zhao, Y. (2012). Recent advances in assisted reproductive technology. Current Obstetrics and Gynecology Reports, 1(4), 166–173.

IMFER BLOG, España por delante de Italia, Francia o Alemania en reproducción asistida. Website: (accessed February, 2019).

M. Spriggs, IVF mixup: White couple have black babies, J. Med. Ethics. (2003). doi:10.1136/jme.29.2.65.

O. Dyer, Black-twins-are-born-to-white-parents-after-infertility-treatment, BMJ, 2002; 325; 64. (n.d.).

BBC NEWS, Embryo mix-up at IVF hospital. Website: (accessed February,

Cohen, J., Gilligan, A., & Garrisi, J. (2005). Setting up an ART laboratory. In Textbook of Assisted Reproductive Techniques (pp. 37–44). CRC Press.

ESHRE Group. (2015). Revised guidelines for good practice in IVF laboratories. Guideline of the European Society of Human Reproduction and Embryology. European Society of Human Reproduction and Embryology.

Tyler, J. P. (2016). Data Management in the ART Unit. In Organization and Management of IVF Units (pp. 193–215). Springer, Cham.

Thornhill, A. R., Brunetti, X. O., & y Bird, S. (2013). Medición de errores humanos en el laboratorio de FIV mediante un sistema electrónico de observación. En el 17° Congreso Mundial sobre controversias en Obstetricia, Ginecología e Infertilidad (COGI) (p. 101).

Commission Directive, (2015). Directive 2006/86/EC as regards certain technical requirements for the coding of human tissues and cells. Official Journal of the European Union. Commission Directive (EU) 2015/565. ELI: 565/oj

Cooper Surgical Company. RI Witness ART Management System. Website: (accessed February, 2019).

Inebir. Website: (accessed February, 2019).

Enríquez, J. G., Domínguez-Mayo, F. J., Escalona, M. J., Ross, M., & Staples, G. (2017). Entity reconciliation in big data sources: A systematic mapping study. Expert Systems with Applications, 80, 14–27.

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008, June). Systematic mapping studies in software engineering. In Ease (Vol. 8, pp. 68–77).

Kitchenham, B., & Brereton, P. (2013). A systematic review of systematic review process research in software engineering. Information and Software Technology, 55(12), 2049–2075.

S. Feyer, S. Siebert, B. Gipp, A. Aizawa, & J. Beel, Integration of the scientific recommender system Mr. DLib into the reference manager JabRef, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2017. doi:10.1007/978-3-319-56608-5 80.

L. Larue, Traceability in assisted reproductive technology, Andrologie. 29 (2000) 384–387.

P. M. M. Kastrop, Quality management in the ART laboratory, Reprod. Biomed. Online. 7 (2003) 691–694.

R. Nunez-Calonge, S. Cortes, B. Peramo, & P. Caballero, Overall quality improvement of an IVF centre: Usefulness of a quality system in reproduction, Int. Congr. Ser. (2004). doi:10.1016/j.ics.2004.04.007.

S. Novo, L. Barrios, J. Santal, R. Gmez-Martnez, M. Duch, J. Esteve, J. A. Plaza, C. Nogus, & E. Ibez, A novel embryo identification system by direct tagging of mouse embryos using silicon-based barcodes, Hum. Reprod. (2011). doi:10.1093/humrep/deq309.

S. Novo, O. Penon, L. Barrios, C. Nogués, J. Santaló, S. Durán, R. Gómez-Matínez, J. Samitier, J. A. Plaza, L. Pérez-García, & E. Ibáñez, Direct embryo tagging and identification system by attachment of biofunctionalized polysilicon barcodes to the zona pellucida of mouse embryos, Hum. Reprod. (2013). doi:10.1093/humrep/det083.

S. Novo, C. Nogués, O. Penon, L. Barrios, J. Santaló, R. Gómez-Martínez, J. Esteve, A. Errachid, J.A. Plaza, L. Peˆrez-García, & E. Ibáñez, Barcode tagging of human oocytes and embryos to prevent mix-ups in assisted reproduction technologies, Hum. Reprod. (2014). doi:10.1093/humrep/det409.

S. Novo, I. Mora-Espí, R. Gómez-Martínez, L. Barrios, E. Ibáñez, X. Such, M. Duch, X. Mora, J.A. Plaza, & C. Nogués, Traceability of human sperm samples by direct tagging with polysilicon microbarcodes, Reprod. Biomed. Online. (2015). doi:10.1016/j.rbmo.2015.04.012.

L. Rienzi, F. Bariani, M. Dalla-Zorza, S. Romano, C. Scarica, R. Maggiulli, A. Nanni-Costa, & F. Ubaldi, Failure mode and effects analysis of witnessing protocols for ensuring traceability during IVF, Reprod. Biomed. Online. (2015).

M. De los Santos, S. Apter, G. Coticchio, S. Debrock, K. Lundin, C. Plancha, F. Prados, L. Rienzi, G. Verheyen, B. Woodward, & N. Vermeulen, Revised guidelines for good practices in IVF laboratories, Hum. Reprod. (2015).

G. Intra, A. Alteri, L. Corti, E. Rabellotti, E. Papaleo, L. Restelli, S. Biondo, M. P. Garancini, M. Candiani, & P. Viganò, Application of failure mode and effect analysis in an assisted reproduction technology laboratory, Reprod. Biomed. Online. (2016). doi:10.1016/j.rbmo.2016.05.008.

D. Cimadomo, F. M. Ubaldi, A. Capalbo, R. Maggiulli, C. Scarica, S. Romano, C. Poggiana, D. Zuccarello, A. Giancani, A. Vaiarelli, & L. Rienzi, Failure mode and effects analysis of witnessing protocols for ensuring traceability during PGD/PGS cycles, Reprod. Biomed. Online. (2016). doi:10.1016/j.rbmo.2016. 06.002.

M. Forte, F. Faustini, R. Maggiulli, C. Scarica, S. Romano, C. Ottolini, A. Farcomeni, A. Palagiano, A. Capalbo, F. Ubaldi, & L. Rienzi, Electronic witness system in IVF-patients perspective., J. Assist. Reprod. Genet. (2016).

D. H. McCulloh, P. A. Labella, & C. McCaffrey, Quality manage ment in the IVF laboratory: Witnessing, in: Princ. IVF Lab. Pract. Optim. Perform. Outcomes, 2017. doi:10.1017/9781316569 238.040.

L. Rienzi, F. Bariani, M. Dalla Zorza, E. Albani, F. Benini, S. Chamayou, M.G. Minasi, L. Parmegiani, L. Restelli, G. Vizziello, & A. N. Costa, Comprehensive protocol of traceability during IVF: The result of a multicentre failure mode and effect analysis, Hum. Reprod. (2017). doi:10.1093/humrep/dex144.

R. Gómez-martínez, S. Novo, M. Duch, L. Barrios, E. Ibañez, C. Nogues, J. Esteve, & J.A. Plaza, Diferent barcodes codification for embryo microlabeling, 14th Int. Conf. Miniaturized Syst. Chem. Life Sci. (2010).

Y. S. Hur, E. K. Ryu, S. J. Park, J. Yoon, S. H. Yoon, G. D. Yang, C. Y. Hur, W. D. Lee, & J. H. Lim, Development of a security system for assisted reproductive technology (ART), J. Assist. Reprod. Genet. (2015). doi:10.1007/s10815-014-0367-0.

A. R. Thornhill, X. Brunetti-Orriols, & S. Bird, Measuring human error in the IVF laboratory using an electronic witnessing system, WORLD Congr. Controv. Obstet. Gynecol. Infertil. (n.d.).

CooperSurgical Fertility Companies, RI Witness, (n.d.). (accessed February, 2019).

A. de la Fuente, M. Boada, A. Reche, M. Muñoz, M. Martínez-Moya, M. Nicolás, J. Marqueta, J. Mozas, I. Arnott, F. Abellán, J. Nadal, L. Feito, & A. Romeu, J. Ballescá, Manual de buenas prácticas, 144 (2016).

Ministerio de sanidad consumo y bienestar social, Gabinete de Prensa – Notas de Prensa, (n.d.). gabinete/ (accessed February, 2019).

Merck, Gidget® : an electronic witness & workflow solution for labs, (n.d.). gies/Gidget.html? (accessed February, 2019).

GineFiv, IVF Patrol. Seguridad total en tu tratamiento de fertilidad, (n.d.). (accessed February, 2019).

Shewhart, Walter Andrew; DEMING, William Edwards. Statistical method from the viewpoint of quality control. Courier Corporation, 1986.

Blanco, R., Enríquez, J. G., Domínguez-Mayo, F. J., Escalona, M. J., & Tuya, J. (2018). Early Integration Testing for Entity Reconciliation in the Context of Heterogeneous Data Sources. IEEE Transactions on Reliability, 67(2), 538–556.

Enríquez, J. G., Olivero, M., Escalona, M. J., & Mejías, M. (2018). MARIA: A Process to Model Entity Reconciliation Problems. J. Web Eng., 17(3&4), 206–223.

Domínguez-Mayo, F. J., Escalona, M. J., Mejías, M., Ross, M., & Staples, G. (2014). Towards a homogeneous characterization of the model-driven web development methodologies. Journal of web engineering, 13(1-2), 129–159.

Escalona, M. J., Gutiérrez, J. J., Pé rez-Pé rez, M., Molina, A., Domínguez-Mayo, E., & Domínguez-Mayo, F. J. (2011). Mea-suring the quality of model-driven projects with NDT-Quality. In Information Systems Development (pp. 307–317). Springer, New York, NY.