CHALLENGES FOR THE ADOPTION OF MODEL-DRIVEN WEB ENGINEERING APPROACHES IN INDUSTRY

Authors

  • ESTEBAN ROBLES LUNA Research and Training in Advanced Computing Laboratory (LIFIA), National University of La Plata, La Plata (Argentina)
  • JUAN MIGUEL SÁNCHEZ BEGINES Web Engineering and Early Testing Group (IWT2), University of Seville, Seville (Spain)
  • JOSÉ MATÍAS RIVERO Research and Training in Advanced Computing Laboratory (LIFIA), National University of La Plata, La Plata (Argentina)
  • LETICIA MORALES Web Engineering and Early Testing Group (IWT2), University of Seville, Seville (Spain)
  • J.G. ENRÍQUEZ Computer Languages and Systems Department. University of Seville. Av. Reina Mercedes s/n, 41012, Seville, Seville.
  • GUSTAVO ROSSI Research and Training in Advanced Computing Laboratory (LIFIA), National University of, La Plata, La Plata (Argentina)

Keywords:

Model-Driven Web Engineering, Human-Centered interfaces, MDE, Industry

Abstract

Model-Driven Web Engineering approaches have become an attractive research and technology solution for Web application development. However, for more than 20 years of development, the industry has not adopted them due to the mismatch between technical versus research requirements. In the context of this joint work between academia and industry, the authors conduct a survey among hundreds of engineers from different companies around the world and, by statistical analysis, they present the current problems of these approaches in scale. Then, a set of guidelines is provided to improve Model-Driven Web Engineering approaches in order to make them viable industry solutions.

Downloads

Download data is not yet available.

References

B. Selic, The pragmatics of model-driven development, IEEE Softw. 20 (2003) 19–25.

doi:10.1109/MS.2003.1231146.

G. Rossi, O. Pastor, D. Schwabe, L. Olsina, Web engineering: modelling and implementing web

applications, Springer Science & Business Media, 2007.

S. Hull, 20 obstacles to scalability, Commun. ACM. 56 (2013) 54.

doi:10.1145/2500468.2500475.

F.J. Domínguez-Mayo, M.J. Escalona, M. Mejías, Quality issues on model-driven web

engineering methodologies, in: Inf. Syst. Dev. Asian Exp., 2011: pp. 295–306. doi:10.1007/978-

-4419-7355-9_25.

M. Urbieta, D. Distante, J.M. Rivero, S. Firmenich, 25 Years of Model-Driven Web

Engineering: What we achieved, What is missing, CLEI Electron. J. 19 (2016) 1:1-1:29.

doi:10.19153/cleiej.19.3.1.

S. Casteleyn, W. Van Woensel, K. Van Der Sluijs, G.J. Houben, Aspect-oriented adaptation

specification in web information systems: A semantics-based approach, New Rev. Hypermedia

Multimed. 15 (2009) 39–71. doi:10.1080/13614560902818297.

I. Jacobson, S. Bylund, The road to the unified software development process, Cambridge

University Press, 2000.

N. Moreno, A. Vallecillo, Towards interoperable Web engineering methods, J. Am. Soc. Inf.

Sci. Technol. 59 (2008) 1073–1092. doi:10.1002/asi.20811.

J. Whittle, J. Hutchinson, M. Rouncefield, The state of practice in model-driven engineering,

IEEE Softw. 31 (2014) 79–85. doi:10.1109/MS.2013.65.

F.J. Domínguez-Mayo, M.J. Escalona, M. Mejías, M. Ross, G. Staples, Towards a homogeneous

characterization of the model-driven web development methodologies, (2014).

http://www.scopus.com/inward/record.url?eid=2-s2.0-

&partnerID=MN8TOARS.

J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, R. Heldal, Industrial adoption of model

driven engineering: Are the tools really the problem?, in: Lect. Notes Comput. Sci. (Including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2013: pp. 1–17. doi:10.1007/978-

-642-41533-3_1.

J.A. García-García, M.J. Escalona, F.J. Domínguez-Mayo, A. Salido, NDT-Suite: A

Methodological Tool Solution in the Model-Driven Engineering Paradigm, J. Softw. Eng. Appl.

(2014) 206–217. doi:10.4236/jsea.2014.74022.

F.J. Domínguez-Mayo, M.J. Escalona, M. Mejías, QuEF (Quality Evaluation Framework) for

model-driven web methodologies, in: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), 2010: pp. 571–575. doi:10.1007/978-3-642-16985-

_57.

R. Acerbis, A. Bongio, M. Brambilla, S. Butti, WebRatio 5: An Eclipse-based CASE tool for

engineering Web applications, Web Eng. (2007) 501–505. doi:10.1007/978-3-540-73597-7_44.

M.J. Escalona, G. Lopez, S. Vegas, L. Garccia-Borgoñon, J.A. Garcia-Garcia, N. Juristo, A

Software Engineering Experiments to value MDE in testing. Learning Lessons, (n.d.).

J.S. Molleri, K. Petersen, E. Mendes, Survey Guidelines in Software Engineering, in: Proc. 10th

ACM/IEEE Int. Symp. Empir. Softw. Eng. Meas. - ESEM ’16, 2016: pp. 1–6.

doi:10.1145/2961111.2962619.

K.B. Wright, Researching Internet-Based Populations: Advantages and Disadvantages of Online

Survey Research, Online Questionnaire Authoring Software Packages, and Web Survey

Services, J. Comput. Commun. 10 (2006) 00–00. doi:10.1111/j.1083-6101.2005.tb00259.x.

E. Luna Robles, G. Rossi, I. Garrigós, WebSpec: A visual language for specifying interaction

and navigation requirements in web applications, Requir. Eng. 16 (2011) 297–321.

doi:10.1007/s00766-011-0124-1.

M.J. Escalona, G. Aragón, NDT. A model-driven approach for web requirements, IEEE Trans.

Softw. Eng. 34 (2008) 377–394. doi:10.1109/TSE.2008.27.

M. Busch, N. Koch, MagicUWE - A case tool plugin for modeling web applications, in: Lect.

Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

: pp. 505–508. doi:10.1007/978-3-642-02818-2_49.

M. Brambilla, IFML: Building the front-end of web and mobile applications with omg’s

interaction flow modeling language, 2014.

P. Fraternali, M. Tisi, Using traceability links and higher-order transformations for easing

regression testing of web applications, J. Web Eng. 10 (2011) 1–20.

Maven, http://maven.apache.org, in: Last Access Febr., 2018.

Jenkins, http://jenkins-ci.org, in: Last Access Febr., 2018.

NewRelic, http://newrelic.com, in: Last Access Febr., 2018.

A.O. Ramirez, Three-Tier Architecture, Linux J. 2000 (2000) 1–4.

G. Toffetti, Web engineering for Cloud computing, in: Curr. Trends Web Eng., 2012: pp. 5–19.

doi:10.1007/978-3-642-35623-0_2.

MDWEnt, http://www.iswe-ev.de/activities/2007/mdwe/, in: Last Access Febr., 2018.

F.J. Domínguez-Mayo, M.J. Escalona, M. Mejías, M. Ross, G. Staples, Quality evaluation for

Model-Driven Web Engineering methodologies, Inf. Softw. Technol. 54 (2012) 1265–1282.

doi:10.1016/j.infsof.2012.06.007.

RubyOnRails, http://rubyonrails.org, in: Last Access Febr., 2018.

DJango, http://djangoproject.com, in: Last Access Febr., 2018.

Grails, http://grails.org, in: Last Access Febr., 2018.

Codeigniter, http://ellislab.com/codeigniter, in: Last Access Febr., 2018.

F.J. Dominguez-Mayo, M.J. Escalona, M. Mejias, a. H. Torres, A Quality Model in a Quality

Evaluation Framework for MDWE methodologies, Res. Challenges Inf. Sci. (RCIS), 2010 Fourth Int. Conf. (2010). doi:10.1109/RCIS.2010.5507323.

J.A. García-García, J. Victorio, L. García-Borgoñón, M.A. Barcelona, F.J. Domínguez-Mayo,

M.J. Escalona, A Formal Demonstration of NDT-Quality: A Tool for Measuring the Quality

using NDT Methodology, in: 21st Annu. Softw. Qual. Manag. Conf., 2013.

EnterpriseArchitect, http://www.sparxsystems.com, in: Last Access Febr., 2018.

MagicDraw, http://nomagic.com/products/magicdraw.html, in: Last Access Febr., 2018.

Downloads

Published

2018-07-01

How to Cite

ESTEBAN ROBLES LUNA, JUAN MIGUEL SÁNCHEZ BEGINES, JOSÉ MATÍAS RIVERO, LETICIA MORALES, J.G. ENRÍQUEZ, & GUSTAVO ROSSI. (2018). CHALLENGES FOR THE ADOPTION OF MODEL-DRIVEN WEB ENGINEERING APPROACHES IN INDUSTRY. Journal of Web Engineering, 17(3-4), 183–205. Retrieved from https://journals.riverpublishers.com/index.php/JWE/article/view/3197

Issue

Section

Articles