• V. RAJALAKSHMI Assistant Professor, School of Computing,Sathyabama University, Chennai, India – 600119.
  • M. LAKSHMI Professor, School of Computing, Sathyabama University, Chennai, India – 600119.
  • V. MARIA ANU Assistant Professor, School of Computing,Sathyabama University, Chennai, India – 600119.


Privacy preservation, Radial basis function, Function approximation, Data anonymization


Data privacy has become the primary concern in the current scenario as there are many pioneering methods for efficient mining of data. There are many algorithms to preserve privacy and handle the trade-off between privacy and utility. The ultimate goal of these algorithms is to anonymize the data without reducing the utility of them. A Privacy preserving procedure should have a minimum execution time, which is the overhead of clustering algorithms implemented using classical methods. There is also no single procedure that completely handles the trade-off and also updates itself automatically. In this work, the anonymization is implemented using Radial Basis Function [RBF] network, which provides both maximum privacy and utility with a proper tuning parameter specified between privacy and utility. The network also updates itself when the trend of data changes by controlling the maximum amount of error with a threshold value.


Download data is not yet available.


Aggarwal. C.C, Yu.P.S (2004) : A CondensationBasedApproachtoPrivacyPreserving Data

Mining.Proceedings of the EDBT Conference, pp. 183--199.

Aggarwal, Charu C., and S. Yu Philip (2008): A general survey of privacy-preserving data

miningmodels and algorithms. Springer US, DOI : 10.1007/978-0-387-70992-5_2

Buratovic, Ines, Mario Milicevic, and KrunoslavZubrinic. (2012):Effects of data

anonymizationonthe data miningresults. MIPRO, Proceedings of the 35th International

Convention. IEEE, pp.1619 – 1623.

Byun, Ji-Won (2007): Efficient k-anonymizationusingclusteringtechniques. Advances in

Databases: Concepts, Systems and Applications. SpringerBerlin Heidelberg, pp. 188-200.

Chen, K., &Liu, L. (2009): Privacy-preservingmultipartycollaborativeminingwithgeometric data

perturbation. Parallel and DistributedSystems, IEEE Transactionson, vol.20(12), pp. 1764-1776.

Chiu, Chuang-Cheng, and Chieh-Yuan Tsai (2007): A k-anonymityclusteringmethodforeffective

data privacypreservation. Advanced Data Mining and Applications. SpringerBerlin Heidelberg,

pp. 89-99.

Dhiraj, S. S., Khan, A., Khan, W., &Challagalla, A. (2009): Privacypreservation in kmeansclusteringbyclusterrotation.

In TENCON 2009-2009 IEEE Region 10 Conference, pp. 1-7.

Evfimievski. A., Srikant. R., Agrawal. R. and Gehrke. J. (2004), “Privacypreservingmining of

association rules of InformationSystems, Vol. 29, No.4, pp. 343-364.

Fong. P. K., and Weber-Jahnke. J. H. (2012), “Privacy preserving decision tree learning using

unrealized data sets”, IEEE TransactionsonKnowledge and Data Engineering, Vol. 24, No.2,


Fung, Benjamin CM, Ke Wang, and Philip S. Yu. (2007): Anonymizingclassification data

forprivacypreservation. Knowledge and Data Engineering, IEEE Transactions on19.5, pp. 711-

, DOI: 10.1109/TKDE.2007.1015.

Ghinita, Gabriel, PanosKalnis, and Yufei Tao (2011): Anonymouspublication of

sensitivetransactional data.Knowledge and Data Engineering, IEEE Transactionson 23.2,pp.

-174,DOI: 10.1109/TKDE.2010.101.

Gionis, Aristides, and TamirTassa.(2009): k-Anonymizationwithminimalloss of

information. Knowledge and Data Engineering, IEEE Transactionson 21.2, DOI: 206-


Guo, Kun, and Qishan Zhang (2013) : Fastclustering-basedanonymizationapproacheswith time

constraintsfor data streams.Knowledge-Based Systems46, pp. 95-108.

Han, S., Ng, W. K., Wan, L., & Lee, V. (2010). Privacy-preservinggradientdescentmethods.

Knowledge and Data Engineering, IEEE Transactions on,22(6),pp. 884-899.

Hong, D., &Mohaisen, A. (2010). AugmentedRotation-BasedTransformationforPrivacy-

Preserving Data Clustering. ETRI Journal, 32(3), pp.351-361.

Islam, M. Z., &Brankovic, L. (2011). Privacypreserving data mining: A

noiseadditionframeworkusing a novel clusteringtechnique. Knowledge-BasedSystems, 24(8), pp.


Kisilevich, Slava, et al. "Efficient multidimensional suppressionfor k-anonymity."Knowledge and

Data Engineering, IEEE Transactionson 22.3 (2010): 334-347,DOI : 10.1109/TKDE.2009.91.

Kumar, Pradeep, KishoreIndukuriVarma, and AshishSureka (2011):

Fuzzybasedclusteringalgorithmforprivacypreserving data mining. International Journal of

Business InformationSystems 7.1,pp. 27-40.

Li, Ninghui, Tiancheng Li, and SureshVenkatasubramanian.(2010): "Closeness: A new

privacymeasurefor data publishing." Knowledge and Data Engineering, IEEE

Transactionson 22.7 ,pp. 943-956, DOI:10.1109/TKDE.2009.139.

Li, T., & Li, N. (2008): Towardsoptimal k-anonymization. Data &KnowledgeEngineering, 65(1),


Li, T., Li, N., Zhang, J., &Molloy, I. (2012): Slicing: A new approachforprivacypreserving data

publishing. Knowledge and Data Engineering, IEEE Transactionson, 24(3), pp.561-574.

Li, Yaping, et al.(2012): "Enablingmultilevel trust in privacypreserving data mining." Knowledge

and Data Engineering, IEEE Transactionson 24.9, pp. 1598-1612,DOI:10.1109/TKDE.2011.124

Lin, C. J., Chen, C. H., & Lee, C. Y. (2004): A self-adaptive quantum radial

basisfunctionnetworkforclassificationapplications. In Neural Networks, 2004. Proceedings. 2004

IEEE International JointConferenceon ,Vol. 4, pp. 3263-3268.

Lin, Jun-Lin, and Meng-ChengWei.(2009): Geneticalgorithm-basedclusteringapproachfor k –

anonymization. ExpertSystemswithApplications 36.6, pp. 9784-9792.

Liu. Q., Shen. H., and Sang, Y. (2015), “Privacy-preserving data

publishingformultiplenumericalsensitiveattributes”, TsinghuaScience and Technology, Vol. 20,

No.3, pp.246-254.

Ni, Weiwei, and Zhihong Chong.(2012) : Clustering-orientedprivacy-preserving data

publishing. Knowledge-BasedSystems , Vol.35 , pp. 264-270.

Oliveira, Stanley RM, and O. Zaiane. (2004) : Data perturbationbyrotationforprivacypreservingclustering.

TechnicalReport TR04, Vol. 17.

Rajalakshmi.V, &AnandhaMala.G. S.(2014): IsometricRelocation of Data bySequencing of Sub-

ClustersforPrivacyPreservation in Data Mining. International Journal of

Engineering&Technology), Vol.6, Issue 2.

Rebollo-Monedero, David, Jordi Forne, and Josep Domingo-Ferrer.(2010): From t-closenesslikeprivacyto

post randomizationviainformationtheory. Knowledge and Data Engineering, IEEE

Transactionson 22.11, pp.1623-1636,DOI: 10.1109/TKDE.2009.190.

Samet, S., &Miri, A. (2012). Privacy-preserving back-propagation and extreme learning machine

algorithms. Data &KnowledgeEngineering, Vol. 79, pp. 40-61.

Sun. X., Sun. L., and Wang. H. (2011), “Extended kanonymitymodelsagainstsensitiveattributedisclosure”,

ComputerCommunications, Vol.34, No.4,

pp. 526-535.

Tamersoy, A., Loukides, G., Nergiz, M. E., Saygin, Y., &Malin, B. (2012). Anonymization of

longitudinal electronic medical records. InformationTechnology in Biomedicine, IEEE

Transactionson, 16(3) , pp. 413-423.

Tao, Yufei, HekangChen, XiaokuiXiao, ShuigengZhou, and Donghui Zhang.(2009): Angel:

Enhancingtheutility of generalizationforprivacypreservingpublication.Knowledge and Data

Engineering, IEEE Transactionson 21, no. 7 ,pp. 1073-1087,DOI: 10.1109/TKDE.2009.65.

Tsiafoulis, S. G., &Zorkadis, V. C. (2010): A Neural Network

ClusteringBasedAlgorithmforPrivacyPreserving Data Mining. InComputationalIntelligence and

Security (CIS), 2010 International Conferenceon, pp. 401-405.

Vaidya, J., & Clifton, C. (2004): Privacy-preserving data mining: Why, how, and when. IEEE

Security &Privacy, 2(6), pp.19-27.

Wahlstrom. K., Roddick. J. F., Sarre. R., Estivill-Castro. V., and de Vries. D. (2009), “Legal and

technicalissues of privacypreservation in data mining”, Encyclopedia of Data Warehousing and

Mining, SecondEdition, pp. 1158-1163.

Wang, Jian, (2009): "A surveyonprivacypreserving data mining." DatabaseTechnology and

Applications, First International Workshopon. IEEE, DOI : 10.1109/DBTA.2009.147.