A MODEL-BASED APPROACH FOR DESCRIBING OFFLINE NAVIGATION OF WEB APPLICATIONS

Authors

  • FELIX ALBERTOS-MARCO Computer System Department, University of Castilla-La Mancha, Spain
  • VICTOR M.R. PENICHET Computer System Department, University of Castilla-La Mancha, Spain
  • JOSE A. GALLUD Computer System Department, University of Castilla-La Mancha, Spain
  • MARCO WINCKLER ICS-IRIT team, Université Paul Sabatier, France

Keywords:

Interactive Applications, Interruptions, Web, Offline, Model-Based

Abstract

The ubiquitousness of the Internet is changing the way users perform their tasks. There is a trend and sometimes a real need to be always connected. The client-server paradigm used in the Web greatly facilitates the consumption of contents. However, there are many situations where the user’s tasks in a Web application might be interrupted due to an unexpected loss of connectivity, temporary unavailability of Web servers, external events, etc., setting the browse to an offline state. The availability of local storage in Web browsers might suggest that users can perform some of their tasks when offline. Nonetheless, several technical constraints might prevent users from efficiently resuming their tasks over the Web after the offline period. In this paper we present a model-based approach called the Offline Model, which is aimed at supporting the execution of tasks interrupted by loss of connectivity based on user navigation with Web applications. Furthermore, we demonstrate how the Offline Model can be exploited to mitigate some of the disruptive effects of interruptions, due to offline navigation, on user tasks based on Web navigation in existent Web applications. The feasibility of such a model approach is demonstrated by a support tool and illustrated by a case study of navigation in a real scenario: the DBLP Web site.

Downloads

Download data is not yet available.

References

Adamczyk, P. D., & Bailey, B. P. If not now, when? In Proceedings of the 2004 conference on

Human factors in computing systems - CHI ’04 (Vol. 6, pp. 271–278). New York, New York,

USA: ACM Press. doi:10.1145/985692.985727, 2004.

Albertos Marco, F., R. Penichet, V. M., Lázaro Gallud, A. J., & Winckler, M. Making Distributed

User Interfaces Interruption-Resistant: A Model-Based Approach. In 3rd Workshop on Distributed

User Interfaces (DUI 2013) (pp. 18–21). London, (UK). Retrieved from

http://dui.uclm.es/2013/Proceedings-DUI-2013.pdf, 2013.

Andrews, A. a., Offutt, J., & Alexander, R. T. Testing Web applications by modeling with FSMs.

Software & Systems Modeling, 4(3), 326–345. doi:10.1007/s10270-004-0077-7, 2005.

Apple Music. http://www.apple.com/music/, 2016.

Casteleyn, S., Garrigos, I. and Mazon, J.. Ten Years of Rich Internet Applications: A Systematic

Mapping Study, and Beyond. ACM Trans. Web 8, 3, Article 18 (July 2014), 46 pages.

DOI=http://dx.doi.org/10.1145/2626369, 2014.

Ceri, S., Brambilla, M., & Fraternali, P. The history of webml lessons learned from 10 years of

model-driven development of Web applications. In A. T. Borgida, V. K. Chaudhri, P. Giorgini, &

E. S. Yu (Eds.), Conceptual Modeling: Foundations and Applications (Lecture No., pp. 273–292).

Springer-Verlag, Berlin, Heidelberg. doi:10.1007/978-3-642-02463-4_15, 2009.

Chen, J., & Zhao, X. Formal models for Web navigations with session control and browser cache.

In M. Davies, Jim and Schulte, Wolfram and Barnett (Ed.), Formal Methods and Software

Engineering (Lecture No., pp. 46–60). Springer Berlin Heidelberg.

doi:http://dx.doi.org/10.1007/978-3-540-30482-1_12, 2004.

Conallen, J. Modeling Web application architectures with UML. Communications of the ACM,

(10), 63–70. doi:10.1145/317665.317677, 1999.

Czerwinski, M., Horvitz, E., & Wilhite, S. A diary study of task switching and interruptions. In

Proceedings of the 2004 conference on Human factors in computing systems - CHI ’04 (pp. 175–

. New York, New York, USA: ACM Press. doi:10.1145/985692.985715, 2004.

DBLP. Retrieved from http://dblp.uni-trier.de/db/, 2014.

Dropbox. https://www.dropbox.com/, 2016.

Fraternali, P., Comai, S., Bozzon, A., and Toffetti, G. Engineering rich internet applications with a

model-driven approach. ACM Trans. Web 4, 2, Article 7 (April 2010), 47 pages.

DOI=http://dx.doi.org/10.1145/1734200.1734204, 2010.

Gómez, J., & Cachero, C. OO-H Method: extending UML to model Web interfaces. In

Information modeling for internet applications (pp. 144–173). IGI Publishing Hershey, PA, USA.

Retrieved from

http://books.google.com/books?hl=en&lr=&id=5ZdiB3t01X0C&oi=fnd&pg=PA144&dq=OOH+Method+:+Extending+UML+to+Model+Web+Interfaces&ots=JLlc0zEw39&sig=wWxBdLH

UyNHglqGuGuA-1AKCwBk, 2003.

Han, M., & Hofmeister, C. Modeling and verification of adaptive navigation in Web applications.

In Proceedings of the 6th international conference on Web engineering - ICWE ’06 (p. 329). New

York, New York, USA: ACM Press. doi:10.1145/1145581.1145645, 2006.

Herder, E. Forward, back and home again: analyzing user behavior on the web. Retrieved from

http://doc.utwente.nl/55828/1/thesis_Herder.pdf, 2006.

Kao, Y.-W., Lin, C., Yang, K.-A., & Yuan, S.-M. A Web-based, Offline-able, and Personalized

Runtime Environment for executing applications on mobile devices. Computer Standards &

Interfaces, 34(1), 212–224. doi:10.1016/j.csi.2011.08.006, 2012.

Knapp, A., & Zhang, G. Model Transformations for Integrating and Validating Web Application

Models. In In Proc. Modellierung 2006. Retrieved from

http://www.pst.ifi.lmu.de/veroeffentlichungen/knapp-zhang:modellierung:2006.pdf, 2006.

Koch, N., Knapp, A., Zhang, G., & Baumeister, H. UML-BASED WEB ENGINEERING An

Approach Based on Standards, 1999.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Florins, M., & Trevisan, D. UsiXML:

A User Interface Description Language for Context-Sensitive User Interfaces. In Proceedings of

the ACM AVI’2004 Workshop-Developing User Interfaces with XML: Advances on User

Interface Description Languages (pp. 55–62), 2004.

Marco, F. A., Gallud, J., Penichet, V., & Winckler, M. A Model-Based Approach for Supporting

Offline Interaction with Web Sites Resilient to Interruptions. In Q. Z. Sheng & J. Kjeldskov

(Eds.), Current Trends in Web Engineering (Vol. 8295, pp. 156–171). Cham: Springer

International Publishing. doi:http://dx.doi.org/10.1007/978-3-319-04244-2_15, 2013.

Marco, F. A., Penichet, V. M. R., & Gallud, J. A. Offline Web Applications: A New Model for

blended Learning. In Proceedings of the 2nd International Workshop on Interaction Design in

Educational Environments (pp. 54–63). SciTePress - Science and and Technology Publications.

doi:10.5220/0004601800540063, 2013.

McAllister, P., & Bond, R. An Offline Web App for the Self-Management of Diabetes and

Obesity. In 2014 Irish Human Computer Interaction Conference. Dublin. Retrieved from

http://ihci2014.dcu.ie/style/papers/Full/Patrick McAllister and Raymond Bond_An Offline Web

App for the Self-Management of Diabetes and Obesity.pdf, 2014.

McFarlane, D. Interruption of people in human-computer interaction: A general unifying

definition of human interruption and taxonomy. Retrieved from

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA333587, 1997.

Mcfarlane, D. Interruption of people in human-computer interaction. Retrieved from

http://interruptions.net/literature/McFarlane-Dissertation-98.pdf, 1998

Paternò, F. ConcurTaskTrees: An Engineered Approach to Model-based Design of Interactive

Systems. The Handbook of Analysis for Human Computer Interaction, 483–500.

doi:10.1111/j.1467-923X.1954.tb00152.x, 2002.

Ricca, F., & Tonella, P. Web site analysis: structure and evolution. In Proceedings International

Conference on Software Maintenance ICSM-94 (pp. 76–86). IEEE Comput. Soc. Press.

doi:10.1109/ICSM.2000.883017, 2000.

Robles Luna, E., Rossi, G., & Garrigós, I. WebSpec: a visual language for specifying interaction

and navigation requirements in Web applications. Requirements Engineering, 16(4), 297–321.

doi:10.1007/s00766-011-0124-1, 2011.

Rodriguez Escolar, J., Cachón, Cristina G., Marin, I., Vanderdonckt, J., Genaro Motti, V. A

model-based approach to generate connection-aware applications for the mobile web. In:

Romanian Journal of Human-Computer Interaction, Vol. 7, no.2, p. 117-138.

http://hdl.handle.net/2078/151129, 2014.29. Spotify. https://www.spotify.com/, 2016.

Syriani, J. A., & Mansour, N. Modeling Web Systems Using SDL Background on SDL. In ISCIS

(pp. 1019–1026). Springer-Verlag, Berlin, Heidelberg, 2003.

Tauscher, L., & Greenberg, S. Revisitation patterns in World Wide Web navigation. In

Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’97 (pp.

–406). New York, New York, USA: ACM Press. doi:10.1145/258549.258816, 1997.

Trafton, G. J., & Monk, C. A. Task Interruptions. Reviews of Human Factors and Ergonomics,

(1), 111–126. doi:10.1518/155723408X299852, 2007.

Trafton, J. G., Altmann, E. M., Brock, D. P., & Mintz, F. E. Preparing to resume an interrupted

task: effects of prospective goal encoding and retrospective rehearsal. International Journal of

Human-Computer Studies, 58(5), 583–603. doi:10.1016/S1071-5819(03)00023-5, 2003.

W3C. Offline Web Applications. Retrieved from http://www.w3.org/TR/offline-webapps/, 2008.

W3C. Web Database. Retrieved from http://www.w3.org/TR/webdatabase/, 2010.

W3C. HTML5 A vocabulary and associated APIs for HTML and XHTML. W3C Candidate

Recommendation 6 August 2013. Retrieved from http://www.w3.org/TR/html5/, 2014.

W3C. Web Storage. Retrieved from http://dev.w3.org/html5/webstorage/, 2014.

W3C. Indexed Database API. Retrieved from http://www.w3.org/TR/IndexedDB/, 2015.

W3C. Service Workers. Retrieved from

https://slightlyoff.github.io/ServiceWorker/spec/service_worker/, 2015.

W3C. Document Object Model. Retrieved from http://www.w3.org/DOM/, 2015.

W3C. File API: Directories and System. Retrieved from https://www.w3.org/TR/file-system-api/,

Winckler, M., & Palanque, P. StateWebCharts: A Formal Description Technique Dedicated to

Navigation Modelling of Web Applications. In J. Jorge, N. Jardim Nunes, & J. Falcão e Cunha

(Eds.), Interactive Systems. Design, Specification, and Verification Volume 2844 (Lecture No.,

pp. 61–76). Springer Berlin Heidelberg. doi:10.1007/978-3-540-39929-2_5, 2003.

Winckler, M., & Vanderdonct, J. Towards a user-centered design of Web applications based on a

task model. In In Proceedings of 5th International Workshop on Web-Oriented Software

Technologies (IWWOST’2005). Porto, Portugal. Retrieved from ftp://ceurws.

org/pub/publications/CEUR-WS/Vol-153.zip#page=36, 2005.

YouTube Red. https://www.youtube.com/red, 2016.

Downloads

Published

2016-06-23

How to Cite

FELIX ALBERTOS-MARCO, VICTOR M.R. PENICHET, JOSE A. GALLUD, & MARCO WINCKLER. (2016). A MODEL-BASED APPROACH FOR DESCRIBING OFFLINE NAVIGATION OF WEB APPLICATIONS. Journal of Web Engineering, 16(1-2), 001–038. Retrieved from https://journals.riverpublishers.com/index.php/JWE/article/view/3293

Issue

Section

Articles