VISUAL WEB MINING FOR WEBSITE EVALUATION

Authors

  • VICTOR PASCUAL-CID Dept. of Information and Communication Technologies Universitat Pompeu Fabra 08108 Barcelona, Spain
  • RICARDO BAEZA-YATES Yahoo! Research Diagonal 177 planta 9 08018 Barcelona, Spain
  • J. CARLOS DuRSTELER Dept. of Information and Communication Technologies Universitat Pompeu Fabra 08018 Barcelona, Spain

Keywords:

Information Visualisation, Web Mining

Abstract

In this paper we present an interactive system named Website Exploration Tool (WET) that aims at supporting the evaluation of websites through the exploration of web data. Our prototype oers a set of coordinated visual abstractions in the form of interactive graphs and trees to analyse data graphs within meaningful contexts such as the website structure and users' ow. Apart from classical approaches, our highly interactive system introduces a wide variety of information visualisation techniques that provide visual cues to assist in the process of digging into usage data. Among them, we present a new hierarchical approach for characterising users' ow which simplies the intricate graphs generated by real users browsing, and a technique for extracting contextual subgraphs simplifying the task of visualising very large websites. The interface of the system has been evaluated with expert analysts that validated the usefulness of the tool for analysing a wide variety of websites.

 

Downloads

Download data is not yet available.

References

Andrews, K. Visualising cyberspace: information visualisation in the harmony internet browser.

In Information Visualization, 1995. Proceedings. (Oct. 1995), pp. 97{104.

Andrews, K. Evaluating information visualisations. In BELIV '06: Proceedings of the 2006 AVI

workshop on BEyond time and errors (2006), ACM, pp. 1{5.

Baeza-Yates, R., and Poblete, B. A website mining model centered on user queries. Semantics,

Web and Mining. M. Ackermann et al. (Eds.): EWMF/KDO 2005 Springer LNAI 4289 (2006),

{17.

Botafogo, R. A., Rivlin, E., and Shneiderman, B. Structural analysis of hypertexts: iden-

tifying hierarchies and useful metrics. ACM Transactions on Information Systems (TOIS) 10, 2

(1992), 142{180.

Card, S. K., Mackinlay, J. D., and Shneiderman, B., Eds. Readings in information visu-

alization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

Chen, J., Zheng, T., Thorne, W., Huntley, D., Zayane, O. R., and Goebel, R. Visual-

izing web navigation data with polygon graphs. In IV '07: Proceedings of the 11th International

Conference Information Visualization (2007), IEEE Computer Society, pp. 232{237.

Chen, J., Zheng, T., Thorne, W., Zaiane, O. R., and Goebel, R. Visual data mining of

web navigational data. In IV '07: Proceedings of the 11th International Conference Information

Visualization (2007), IEEE Computer Society, pp. 649{656.

Chi, E., Pirolli, P., and Pitkow, J. The scent of a site: a system for analyzing and predicting

information scent, usage, and usability of a web site. In CHI '00: Proceedings of the SIGCHI

conference on Human factors in computing systems (2000), ACM, pp. 161{168.

Chi, E. H. Improving web usability through visualization. IEEE Internet Computing 6, 2 (2002),

{71.

Chi, E. H., Pitkow, J., Mackinlay, J., Pirolli, P., Gossweiler, R., and Card, S. K.

Visualizing the evolution of web ecologies. In CHI '98: Proceedings of the SIGCHI conference

on Human factors in computing systems (1998), ACM Press/Addison-Wesley Publishing Co.,

pp. 400{407.

Cooley, R., Mobasher, B., and Srivastava, J. Data preparation for mining world wide web

browsing patterns. Knowledge and Information Systems 1 (1999), 5{32.

Cugini, J., and Scholtz, J. Visvip: 3d visualization of paths through web sites. In DEXA

'99: Proceedings of the 10th International Workshop on Database & Expert Systems Applications

(1999), IEEE Computer Society, p. 259.

Diebold, B., and Kaufmann, M. Usage-based visualization of web localities. In APVis '01:

Proceedings of the 2001 Asia-Paci c symposium on Information visualisation (Darlinghurst, Aus-

tralia, Australia, 2001), Australian Computer Society, Inc., pp. 159{164.

Edmonds, J. Optimum Branchings. J. Res. Nat. Bur. Standards, 1967.

Eick, S. G. Visualizing online activity. Communications. ACM 44, 8 (2001), 45{50.

Furnas, G. Generalized sheye views. ACM SIGCHI Bulletin 17, 4 (1986), 23.

Heer, J., and Card, S. Doitrees revisited: scalable, space-constrained visualization of hierarchi-

cal data. Proceedings of the working conference on Advanced visual interfaces (2004), 421{424.

Henry, N., and Fekete, J. Matrixexplorer: a dual-representation system to explore social

networks. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 677{684.

Hong, J. I., and Landay, J. A. Webquilt: a framework for capturing and visualizing the web

experience. In WWW '01: Proceedings of the 10th international conference on World Wide Web

(2001), ACM, pp. 717{724.

Keahey, T. A., and Eick, S. G. Visual path analysis. In Proceedings of the IEEE Symposium

on Information Visualization (InfoVis'02) (2002), IEEE Computer Society, p. 165.

Mladenic, D., and Grobelnik, M. Visualizing very large graphs using clustering neighborhoods.

Lecture Notes in Computer Science: Local Pattern Detection 3539/2005 (2005).

Munzner, T. Drawing large graphs with h3viewer and site manager. In GD '98: Proceedings of

the 6th International Symposium on Graph Drawing (1998), Springer-Verlag, pp. 384{393.

Munzner, T. A nested process model for visualization design and validation. IEEE Transactions

on Visualization and Computer Graphics 15, 6 (2009), 921{928.

Munzner, T., and Burchard, P. Visualizing the structure of the world wide web in 3d hy-

perbolic space. Proceedings of the rst symposium on Virtual reality modeling language (1995),

{38.

Pei, J., Han, J., Mortazavi-Asl, B., and Zhu, H. Mining access patterns eciently from web

logs. In PADKK '00: Proceedings of the 4th Paci c-Asia Conference on Knowledge Discovery

and Data Mining, Current Issues and New Applications (London, UK, 2000), Springer-Verlag,

pp. 396{407.

Pitkow, J. E., and Bharat, K. A. Webviz: A tool for world-wide web access log analysis. In

Proceedings of the 1st International WWW Conference (1994), pp. 271{277.

Robertson, G., Mackinlay, J., and Card, S. Cone trees: animated 3d visualizations of hi-

erarchical information. Proceedings of the SIGCHI conference on Human factors in computing

systems: Reaching through technology (1991), 189{194.

Spiliopoulou, M. Web usage mining for web site evaluation. Communications of the ACM 43,

(2000), 127{134.

Thomas, J., and Cook, K. Illuminating the path: The research and development agenda for

visual analytics. IEEE Computer Society (2005).

Turetken, O., and Sharda, R. Visualization of web spaces: state of the art and future direc-

tions. SIGMIS Database 38, 3 (2007), 51{81.

van Ham, F., and Perer, A. Search, Show Context, Expand on Demand": Supporting Large

Graph Exploration with Degree-of-Interest. IEEE Transactions on Visualization and Computer

Graphics 15, 6 (2009), 953{960.

Willett, W., Heer, J., and Agrawala, M. Scented widgets: Improving navigation cues with

embedded visualizations. IEEE Transactions on Visualization and Computer Graphics 13, 6

(2007), 1129{1136.

Yee, K., Fisher, D., Dhamija, R., and Hearst, M. Animated exploration of dynamic graphs

with radial layout. Proceedings of the IEEE Symposium on Information Visualization 43 (2001).

Downloads

Published

2010-11-30

How to Cite

PASCUAL-CID, V., BAEZA-YATES, R. ., & DuRSTELER, J. C. . (2010). VISUAL WEB MINING FOR WEBSITE EVALUATION. Journal of Web Engineering, 9(4), 347–368. Retrieved from https://journals.riverpublishers.com/index.php/JWE/article/view/4007

Issue

Section

Articles