Minimizing the Cost of Agriculture Waste for Cellulosic Biofuels
Keywords:
corn stover, supply market structure, biomass cost model, cellulosic biofuelsAbstract
Several studies have evaluated ways to reduce biomass cost
through optimization of biorefinery location thus reducing biomass
transport cost. While other studies have provided models for farmer
supply response and participation (market structure), there is a gap in
understanding how biomass transportation costs are related to farmer
incentives. This study bridges this gap. A biomass cost model is devel-
oped to evaluate the trade-offs between biomass transport cost, incen-
tives to farmers, farmer participation, biorefinery size, and alternative
feedstock availability. This article finds that a focus on optimizing
biomass transport cost and biorefinery location, without considering
the relationships between biomass transport cost and farmer incentives
increases biomass cost by 15% to 20%.
Downloads
References
Sims, R., Mabee, W., Saddler, J., and Taylor, M. (2010). An Overview of Second
Generation Biofuel Technologies. Bioresource Technology 101 (6). Elsevier Ltd: 1570–
doi:10.1016/j.biortech.2009.11.046.
Hoogwijk, M., Faaij, A., Broek, R., Berndes, G., Gielen, D., and Turkenburg, W.
(2003). Exploration of the Ranges of the Global Potential of Biomass for Energy.
Biomass and Bioenergy. doi:10.1016/S0961-9534(02)00191-5. USDA.
Turhollow, A.F., Perlack, R.D., Eaton, LM., Langholtz, M.H., Brandt, C.C.,
Downing, M.E., Wright, L.L, Skog, K.E, Stokes, B.J., and Lebow, P. (2014). The
Updated Billion-Ton Resource Assessment. Biomass and Bioenergy 70. Elsevier Ltd:
–64. doi:10.1016/j.biombioe.2014.09.007.
Marvin, A., Schmidt, L., Benjaafar, S., Tiffany, D. and Daoutidis, P. (2012).
Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain.
Chemical Engineering Science 67. Elsevier: 68–79. doi:10.1016/j.ces.2011.05.055.
Rentizelas, A., Tolis, A. and Tatsiopoulos, I. (2009). Logistics Issues of Biomass:
The Storage Problem and the Multi-Biomass Supply Chain. Renewable and
Sustainable Energy Reviews. doi:10.1016/j.rser.2008.01.003.
Leboreiro, J., and Ahmad, K. (2011). Biomass Transportation Model and Optimum
Plant Size for the Production of Ethanol. Bioresource Technology 102 (3). Elsevier
Ltd: 2712–23. doi:10.1016/j.biortech.2010.10.144.
Thompson, J.L., and Tyner, W.E. (2014). Corn Stover for Bioenergy Production:
Cost Estimates and Farmer Supply Response. Biomass and Bioenergy 62. Elsevier
Ltd: 166–73. doi:10.1016/j.biombioe.2013.12.020.
Tyndall, J.C., Berg, E.J., and Colletti, J.P. (2011). Corn Stover as a Biofuel Feedstock
in Iowa’s Bio-Economy: An Iowa Farmer Survey. Biomass and Bioenergy 35: 1485–
doi:10.1016/j.biombioe.2010.08.049.
Carriquiry, M., Du, X. and Timilsina, G. (2011). Second Generation Biofuels:
Economics and Policies. Energy Policy 39 (7). Elsevier: 4222–34. doi:10.1016/j.
enpol.2011.04.036.
Perlack, R.D., and Turhollow, A. (2003). Feedstock Cost Analysis of Corn Stover
Residues for Further Processing. Energy 28: 1395–1403. doi:10.1016/S0360-
(03)00123-3.
Petrolia, D. (2008). The Economics of Harvesting and Transporting Corn Stover for
Conversion to Fuel Ethanol: A Case Study for Minnesota. Biomass and Bioenergy 32:
–12. doi:10.1016/j.biombioe.2007.12.012.
Arnold, U., and Yildiz, O. (2015). Economic Risk Analysis of Decentralized
Renewable Energy Infrastructures – A Monte Carlo Simulation Approach.
Renewable Energy 77 (May): 227–39. doi:10.1016/j.renene.2014.11.059.
Haque, M., Epplin, F., Biermacher, J., Holcomb, R., and Kenkel, P. (2014).
Fall 2016, Vol. 36, No. 2
Marginal Cost of Delivering Switchgrass Feedstock and Producing Cellulosic
Ethanol at Multiple Biorefineries. Biomass and Bioenergy 66. Elsevier Ltd: 308–19.
doi:10.1016/j.biombioe.2014.02.004.
Lamers, P., Roni, M., Tumuluru, J., Jacobson, J., Cafferty, K., Hansen, J., Kenney,
K., Teymouri, F., and Bals, B. (2015). Techno-Economic Analysis of Decentralized
Biomass Processing Depots. Bioresource Technology 194. Elsevier Ltd: 205–13.
doi:10.1016/j.biortech.2015.07.009.
Graham, R., Nelson, J., Sheehan, J., Perlack, R. and Wright L. (2007). Current
and Potential U.S. Corn Stover Supplies. Agronomy Journal 99: 1–11. doi:10.2134/
agronj2005.0222.
Wilhelm, W.W., Jane, M.F., Johnson, D.L., Karlen, J.M., and David, T.L. (2007).
Corn Stover to Sustain Soil Organic Carbon Further Constrains Biomass Supply.
Agronomy Journal 99: 1665–67. doi:10.2134/agronj2007.0150.
Overend, R. (1982). The Average Haul Distance and Transportation Work Factors
for Biomass Delivered to a Central Plant. Biomass 2: 75–79.
Alfonso, D., C. Perpiñá, A. Pérez-Navarro, E. Peñalvo, C. Vargas and R. Cárdenas
(2009). Methodology for Optimization of Distributed Biomass Resources
Evaluation, Management and Final Energy Use. Biomass and Bioenergy 33: 1070–79.
doi:10.1016/j.biombioe.2009.04.002.
Griffith, A., Haque, M. and Epplin, F. (2014). Cost to Produce and Deliver
Cellulosic Feedstock to a Biorefinery: Switchgrass and Forage Sorghum. Applied
Energy 127. Elsevier Ltd: 44–54. doi:10.1016/j.apenergy.2014.03.068.
Maker (2007). Estimating a Value for Corn Stover. Iowa State University Extension,
Ag Decision Maker Document FM-1698.
Manos, B., Begum, M., Kamruzzaman, M., Nakou, I., and Papathanasiou, J. (2007).
Fertilizer Price Policy, the Environment and Farms Behavior. Journal of Policy
Modeling 29 (1): 87–97. doi:10.1016/j.jpolmod.2006.05.002.
Srivastava, U.K. (1993). Price Elasticity of Fertilizer Demand in India: A Review.
Fertilizer Pricing: Issues Related to Subsidies.
Wilhelm, W.W., Jane, M.F., Johnson, D.T., Lightle, D.L. Karlen, J.M., Novak, N.W.,
Barbour, D.A., and Laird, et al. (2011). Vertical Distribution of Corn Stover Dry
Mass Grown at Several US Locations. Bioenergy Research 4: 11–21. doi:10.1007/
s12155-010-9097-z