Biomass Supply Strategy for Building a Sustainable Cellulosic Biofuel Business
Keywords:
Corn Stover, Supply Variability, Feedstock Diversifi- cation, Biofuels, Efficient FrontierAbstract
Companies venturing into the cellulosic biofuels business will be
required to make portfolio decisions based on feedstock availability
and variations in biomass supplies. Fundamental differences exist in
biomass supplies for first-generation corn ethanol and second-gener-
ation cellulosic biofuels. While first-generation ethanol in the U.S. is
produced primarily from corn, a tradable commodity that is trans-
ported long distances, second-generation cellulosic biofuels are pro-
duced from cellulosic biomass and there are greater limitations due to
transportation distances. As a result, cellulosic biofuels producers will
be exposed to local variations in biomass supplies. Studies have shown
that 20-30% variations in collectable stover supply are typical. Such
large variations translate into business risk and impacts issues associ-
ated with sustainability. Hence, companies venturing into cellulosic
biofuels will be required to develop strategies to reduce the impact of
feedstock supply variations. A sustainable biomass supply chain will
need strategies for developing supply market structures, contracting
programs with farmers, and a feedstock diversification program that
reduces the impact of these large variations. This study focuses on
identifying potential options for managers to consider when develop-
ing sustainable feedstock supply programs, and key trade-offs that
help reduce costs and manage feedstock supply risks.
Downloads
References
R.E.H. Sims, W. Mabee, J.N. Saddler, M. Taylor (2010). An overview of second
generation biofuel technologies, Bioresour. Technol. 101, 1570–1580. doi:10.1016/j.
biortech.2009.11.046.
T.R. Brown, R.C. Brown (2013). A review of cellulosic biofuel commercial-scale
projects in the United States, Biofuels, Bioprod. Biorefining. 7, 235–245. doi:10.1002/
bbb.1387.
Biomass Research and Development Initiative (2008). Increasing feedstock
production for biofuels: economic drivers, environmental implications, and the
role of research. Washington, D.C. 146 pp.
W.W. Wilhelm, J.M.F. Johnson, D.T. Lightle, D.L. Karlen, J.M. Novak, N.W. Barbour,
et al. (2011). Vertical distribution of corn stover dry mass grown at several US
locations, Bioenergy Res. 4, 11–21. doi:10.1007/s12155-010-9097-z.
A.F. Turhollow, R.D. Perlack, L.M. Eaton, M.H. Langholtz, C.C. Brandt, M.E.
Downing, et al. (2014). The Updated Billion-Ton Resource Assessment, Biomass and
Bioenergy. 70, 149–164. doi:10.1016/j.biombioe.2014.09.007.
R.D. Perlack, A.F. Turhollow (2003). Feedstock cost analysis of corn stover residues
for further processing, Energy. 28,1395–1403. doi:10.1016/S0360-5442(03)00123-3.
S. Tokgoz, A. Elobeid, J. Fabiosa, D.J. Hayes, B.A. Babcock, T.H. Yu, et al. (2005).
Emerging biofuels: outlook of effects on U.S. grain, oilseed, and livestock markets.
://CABI:20083002548.
D.R. Petrolia (2007). The economics of harvesting and transporting corn stover for
conversion to fuel ethanol: A case study for Minnesota, Biomass and Bioenergy. 32
(2008) 603–612. doi:10.1016/j.biombioe.12.012.
W. Alex Marvin, L.D. Schmidt, S. Benjaafar, D.G. Tiffany, P. Daoutidis (2012).
Economic Optimization of a Lignocellulosic Biomass-to-Ethanol Supply Chain,
Chem. Eng. Sci. 67, 68–79. doi:10.1016/j.ces.2011.05.055.
A.A. Rentizelas, A.J. Tolis, I.P. Tatsiopoulos (2009). Logistics issues of biomass: The
storage problem and the multi-biomass supply chain, Renew. Sustain. Energy Rev.
, 887–894. doi:10.1016/j.rser.2008.01.003.
Strategic Planning for Energy and the Environment
L. Axelsson, M. Franzén, M. Ostwald, G. Berndes, G. Lakshmi, N.H. Ravindranath
(2012). Perspective: Jatropha cultivation in southern India: Assessing farmers’
experiences, Biofuels, Bioprod. Biorefining. 6, 246–256. doi:10.1002/bbb.
B.M. Jenkins, L.L. Baxter, T.R. Miles, T.R. Miles (1998). Combustion properties of
biomass, Fuel Process. Technol. 54, 17–46. doi:10.1016/S0378-3820(97)00059-3.
F. Preto (2007). Strategies & Techniques for Combustion of Agricultural Biomass
Fuels Advantages of Energy from Biomass. http://www.gtmconference.ca/site/
downloads/presentations/1B3 - Fernando Preto.pdf.
M. Carriquiry, X. Du, G.R. Timilsina (2011). Second generation biofuels: Economics
and policies, Energy Policy. 39, 4222–4234. doi:10.1016/j.enpol.2011.04.036.
J.R. Hettenhaus, R. Wooley, A. Wiselogel (2000). Biomass Commercialization
Prospects in the Next 2–5 Years.
A.D. Maker (2007). Estimating a Value for Corn Stover, Iowa State Univ. Extension,
Ag Decis. Mak. Doc. FM-1698. 4–7.
J.M.F. Johnson, R.R. Allmaras, D.C. Reicosky (2006). Estimating source carbon from
crop residues, roots and rhizodeposits using the national grain-yield database,
Agron. J. 98, 622–636. doi:10.2134/agronj2005.0179.
R.L. Graham, R. Nelson, J. Sheehan, R.D. Perlack, L.L. Wright (2007). Current and
potential U.S. corn stover supplies, Agron. J. 99, 1–11. doi:10.2134/agronj2005.0222.
USDA, Crop Production Historical Track Records (2013).
W.W. Wilhelm, J.M.F. Johnson, D.L. Karlen, D.T. Lightle (2007). Corn stover to
sustain soil organic carbon further constrains biomass supply, Agron. J. 99, 1665–
doi:10.2134/agronj2007.0150.
F. Wirl (2009). Oligopoly meets oligopsony: The case of permits, J. Environ. Econ.
Manage. 58, 329–337. doi:10.1016/j.jeem.2009.04.006.
C.E. Ferrer (2013). Oligopsony-Oligopoly the Perfect Imperfect Competition,
Procedia Econ. Financ. 5, 269–278. doi:10.1016/S2212-5671(13)00033-6.
H. Markowitz (1952). Portfolio Selection, J. Finance. 7, 77–91. doi:10.2307/2329297.
W.F. Sharpe (1964). Capital Asset Prices: A Theory of Market Equilibrium Under
Conditions of Risk, J. Finance. 19, 425–442. doi:10.2307/2329297.
B. Blackwell (1959). Illustrative Portfolio Analysis, in: Portf. Sel. Effic. Diversif.
Investments. Wiley, Yale University Press.
E.F. Fama (1977). Risk-adjusted discount rates and capital budgeting under
uncertainty, J. Financ. Econ. 5, 3–24. doi:10.1016/0304-405X(77)90027-7.
M.A. Sanderson, R.L. Reed, S.B. McLaughlin, S.D. Wullschleger, B. V. Conger, D.J.
Parrish, et al. (1996). Switchgrass as a sustainable bioenergy crop, in: Bioresour.
Technol., pp. 83–93. doi:10.1016/0960-8524(95)00176-X.
S.B. McLaughlin, L.A. Kszos (2005). Development of switchgrass (Panicum
virgatum) as a bioenergy feedstock in the United States, Biomass and Bioenergy. 28,
–535. doi:10.1016/j.biombioe.2004.05.006.
A. Kumar, S. Sokhansanj (2007). Switchgrass (Panicum vigratum, L.) delivery to a
biorefinery using integrated biomass supply analysis and logistics (IBSAL) model,
Bioresour. Technol. 98, 1033–1044. doi:10.1016/j.biortech.2006.04.027.
G.E. Varvel, K.P. Vogel, R.B. Mitchell, R.F. Follett, J.M. Kimble (2008). Comparison
of corn and switchgrass on marginal soils for bioenergy, Biomass and Bioenergy. 32,
–21. doi:10.1016/j.biombioe.2007.07.003.
T.A. Maung, C.R. Gustafson, D.M. Saxowsky, J. Nowatzki, T. Miljkovic, D.
Ripplinger (2013). The logistics of supplying single vs. multi-crop cellulosic
feedstocks to a biorefinery in southeast North Dakota, Appl. Energy. 109, 229–238.
doi:10.1016/j.apenergy.2013.04.003.
R.G. Nelson (2002). Resource assessment and removal analysis for corn stover and
Spring 2016, V ol. 35, No. 4
wheat straw in the Eastern and Midwestern United States - Rainfall and wind-
induced soil erosion methodology, Biomass and Bioenergy. 22, 349–363. doi:10.1016/
S0961-9534(02)00006-5.
R.D. Perlack, B.J. Stokes, L.M. Eaton, A.F. Turnhollow (2011). U.S. Billion-Ton
Update. https://bioenergykdf.net/.
F. Talebnia, D. Karakashev, I. Angelidaki (2010). Production of bioethanol from
wheat straw: An overview on pretreatment, hydrolysis and fermentation, Bioresour.
Technol. 101, 4744–4753. doi:10.1016/j.biortech.2009.11.080