Modeling the Microwave Transmissivity of Row Crops
Keywords:
HFSS, scattering, SMOS, SMAP, soil moisture, S-parameters, transmissivity, vegetation optical depthAbstract
We develop a method to model the microwave transmissivity of row crops that explicitly accounts for their periodic nature as well as multiple scattering. We hypothesize that this method could eventually be used to improve satellite retrieval of soil moisture and vegetation optical depth in agricultural regions. The method is characterized by unit cells terminated by periodic boundary conditions and Floquet port excitations solved using commercial software. Individual plants are represented by vertically oriented dielectric cylinders. We calculate canopy transmissivity, reflectivity, and loss in terms of S-parameters. We validate the model with analytical solutions and illustrate the effect of canopy scattering. Our simulation results are consistent with both simulated and measured data published in the literature.
Downloads
References
D. Entekhabi, E. G. Njoku, P. E. O'Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson, J. Kimball, J. R. Piepmeier, R. D. Koster, N. Martin, K. C. McDonald, M. Moghaddam, S. Moran, R. Reichle, J. C. Shi, M. W. Spencer, S. W. Thurman, L. Tsang, and J. Van Zyl, “The soil moisture active passive (SMAP) mission,” Proceedings of the IEEE, vol. 98, no. 5, pp. 704-716, May 2010.
Y. H. Kerr Kerr, P. Waldteufel, J.-P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.-J. Escorihuela, J. Font, N. Reul, C. Gruhier, S. N. Juglea, M. R. Drinkwater, A. Hahne, M. Martín-Neira, and S. Mecklenburg, “The SMOS mission: New tool for monitoring key elements of the global water cycle,” Proceedings of the IEEE, vol. 98, no. 5, pp. 666- 687, May 2010.
J.-P. Wigneron, Y. Kerr, P. Waldteufel, K. Saleh, M.-J. Escorihuela, P. Richaume, P. Ferrazzoli, P. de Rosnay, R. Gurney, J.-C. Calvet, J.P. Grant, M. Guglielmetti, B. Hornbuckle, C. Mätzler, T. Pellarin, and M. Schwank, “L-band microwave emission of the biosphere (L-MEB) model: Description and calibration against experimental data sets over crop fields,” Remote Sensing of Environment, vol. 107, no. 4, pp. 639-655, 2007.
P. O’Neill, S. Chan, E. Njoku, T. Jackson, and R. Bindlish, “Algorithm theoretical basis document level 2 & 3 soil moisture (passive) data products; revision B,” Jet Propulsion Lab., California Inst. Technol.: Pasadena, CA, USA, 2017.
V. A. Walker, B. K. Hornbuckle and M. H. Cosh, “A five-year evaluation of SMOS level 2 soil moisture in the corn belt of the United States,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 12, pp. 4664-4675, Dec. 2018.
V. A. Walker, B. K. Hornbuckle, M. H. Cosh, and J. H. Prueger, “Seasonal evaluation of SMAP soil moisture in the U.S. corn belt,” Remote Sensing, vol. 11, no. 21, pp. 5-7, 2019.
M. Kurum, “Quantifying scattering albedo in microwave emission of vegetated terrain,” Remote Sensing of Environment, vol. 129, pp. 66-74, 2013.
B. K. Hornbuckle and T. L. Rowlandson, “Evaluating the first-order tau-omega model of terrestrial microwave emission,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 193-196, July 2008.
F. T. Ulaby, A. Tavakoli, and B. A. Thomas, “Microwave propagation constant for a vegetation canopy with vertical stalks,” IEEE Transactions on Geoscience and Remote Sensing, vol. 25, no. 6, pp. 714-725, Nov. 1987.
H. Huang, L. Tsang, E. G. Njoku, and A. Colliander, “A new vegetation model based on numerical 3D solutions of Maxwell equations,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2903-2906, July 2017.
A. Colliander, E. G. Njoku, H. Huang, and L. Tsang, “Soil moisture retrieval using full wave simulations of 3-D Maxwell equations for compensating vegetation effects,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1418-1421, July 2018.
HFSS documentation: Floquet Ports, Ansoft Corporation, Canonsburg, PA, USA, 2016.
M. Malajner and D. Gleich, “Soil moisture estimation using UWB,” Applied Computational Electromagnetics Society Conference, pp. 298- 299, Honolulu, HI, USA, Mar. 2016.
K. P. Prokopidis and T. D. Tsiboukis, “Modeling of ground-penetrating radar for detecting buried objects in dispersive soils,” Applied Computational Electromagnetics Society Journal, vol. 22, no. 2, pp. 287-294, July 2007.
HFSS Workshop 9-1: Unit cell analysis (infinite array), Ansoft Corporation, Canonsburg, PA, USA, 2015.
S. N. Makarov and A. Puzella, “Scan impedance for an infinite dipole array: Hansen's formulas compared with Ansoft HFSS simulations [EM programmer's notebook],” IEEE Antennas and Propagation Magazine, vol. 49, no. 4, pp. 143-156, Aug. 2007.
A. K. Bhattacharyya, Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems, 1st ed. Wiley-Interscience, 2006.
C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed., pp. 188-208, John Wiley & Sons, 2012.
W. C. Chew, Waves and Fields in Inhomogeneous Media, 1st ed., pp. 49-53, Wiley-IEEE Press, 1995.