Preparation and Electrical Testing of Double Top Gate Graphene Field-Effect Transistor
DOI:
https://doi.org/10.13052/2022.ACES.J.370704Keywords:
current characteristics, GCA, graphene, p-n junction, terahertzAbstract
In this paper, we prepare and test a graphene field-effect transistor with two top gates. The Fermi energy level of graphene can be adjusted by applying positive and negative voltages to the two top gates, and N-type and P-type graphene are formed in the channel region, thus inducing a graphene p-n junction. The current model is established using the gradual channel approximation (GCA) method, and the current and p-n junction characteristics of the device were obtained by formula simulations. Based on the principle of p-n junction luminescence, this device with graphene p-n junction is expected to achieve terahertz wave radiation with an appropriate optical resonant cavity.
Downloads
References
S. Masuminia, C. Ghobadi, J. Nourinia, M. Karamirad, and B. Mohammadi, “A novel tunable graphene based terahertz absorber with polarization insensitive,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 31, no. 12, pp. 1439-1444, 2021.
B. Beiranvand and A. S. Sobolev, “A proposal for a multi-functional tunable dual-band plasmonic absorber consisting of a periodic array of elliptical grooves,” J. Opt., vol. 22, Art. no. 105005, 2020.
B. Beiranvand, A. S. Sobolev, and A. Sheikhaleh, “A proposal for a dual-band tunable plasmonic absorber using concentric-rings resonators and mono-layer graphene,” Optik, vol. 223, Art. no. 165587, 2020.
V. Kumar, “24 GHz graphene patch antenna array,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 34, no. 5, pp. 676-683, 2019.
S.-l. Wang, J.-S. Hong, Y. D., and Z.-j. Chen, “A frequency reconfigurable antenna based on few layer graphene,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 5, pp. 542-547,2021.
R. Bala, R. Singh, A. Marwaha, and S. Marwaha, “Wearable graphene based curved patch antenna for medical telemetry applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 31, no. 5, pp. 543-550, 2021.
R. Sordan, F. Traversi, and V. Russo, “Logic gates with a single graphene transistor,” Appl. Phys. Lett., vol. 94, Art. no. 073305, 2009. Available: https://doi.org/10.1063/ 1.3079663.
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotech, vol. 3, pp. 210-215, 2008.
P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano, vol. 6, no. 10, pp. 9118-9124, 2012.
I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac Fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett., vol. 12, no. 2, pp. 551-555, 2012.
L. Valentini, J. M. Kenny, F. Alimenti, and L. Roselli, “Planar MOSFET devices on paper substrate using graphene oxide film as gate dielectric,” in Proc. 2013 European Microwave Conference, pp. 5-8, 2013, doi: 10.23919/EuMC.2013.6686576.
J. S. Moon, D. Curtis, S. Bui, T. Marshall, D. Wheeler, I. Valles, S. Kim, E. Wang, X. Weng, and M. Fanton, “Top-gated graphene field-effect transistors using graphene on Si (111) wafers [J],” IEEE Electron. Device Lett., vol. 31, no. 11, pp. 1193-1195, 2010.
J. S. Moon, D. Curtis, M. Hu, D. Wong, C. Mcguire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers, Jr. Eddy, and D. K. Gaskill, “Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates,” IEEE Electron. Device Lett., vol. 30, no. 6, pp. 650-652, 2009.
K. Tamersit, “An ultra-sensitive gas nanosensor based on asymmetric dual-gate graphene nanoribbon field-effect transistor: Proposal and investigation,” J. Comput. Electron., vol. 18, no. 3, pp. 846-855, 2019.
J. P. Liu, S. Safavi-Naeini, and D. Ban, “Fabrication and measurement of graphene p–n junction with two top gates,” Electron. Lett., vol. 50, no. 23, pp. 1724-1726, 2014.
J. Sarker and A. Shifat, “An analytical approach for modeling of a top gated graphene based MOSFET[C],” in Proc. Int. Conf. Comput. Inform. Technol., IEEE, 2017.
S. Bardhan, M. Sahoo, and H. Rahaman, “Empirical drain current model of graphene field-effect transistor for application as a circuit simulation tool,” IETE J. Res., no. 3, pp. 1-13, 2019.
M. Weis, “Gradual channel approximation models for organic field-effect transistors: The spacecharge field effect,” J. App. Phys., vol. 111, Art. no. 054506, 2012.
B. Su, J. Huang, and J. Liu, “Current characteristics of double-top-gated graphene field effect transistor,” in Proc. 2021 IEEE 4th Int. Conf. Autom. Electron. Electr. Eng. (AUTEEE), Shenyang, China, Nov. 19-21, pp. 264-267, 2021.
A. Greene, S. Madisetti, P. Nagaiah, V. Tokranov, M. Yakimov, R. Moore, and S. Oktyabrsky, “InGaSb MOSFET channel on metamorphic buffer: Materials, interfaces and process options,” in Proc. 223th ECS Meeting, 2013.
P. D. Ye, A. T. Neal, T. Shen, J. J. Gu, M. L. Bolen, and M. A. Capano, “Atomic-layer-deposited high-k dielectric integration on epitaxial graphene,” ECS Trans., vol. 33, no. 3, pp. 459-466, 2010.