Preparation and Electrical Testing of Double Top Gate Graphene Field-Effect Transistor
##plugins.pubIds.doi.readerDisplayName##:
https://doi.org/10.13052/2022.ACES.J.370704关键词:
current characteristics, GCA, graphene, p-n junction, terahertz摘要
In this paper, we prepare and test a graphene field-effect transistor with two top gates. The Fermi energy level of graphene can be adjusted by applying positive and negative voltages to the two top gates, and N-type and P-type graphene are formed in the channel region, thus inducing a graphene p-n junction. The current model is established using the gradual channel approximation (GCA) method, and the current and p-n junction characteristics of the device were obtained by formula simulations. Based on the principle of p-n junction luminescence, this device with graphene p-n junction is expected to achieve terahertz wave radiation with an appropriate optical resonant cavity.
##plugins.generic.usageStats.downloads##
参考
S. Masuminia, C. Ghobadi, J. Nourinia, M. Karamirad, and B. Mohammadi, “A novel tunable graphene based terahertz absorber with polarization insensitive,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 31, no. 12, pp. 1439-1444, 2021.
B. Beiranvand and A. S. Sobolev, “A proposal for a multi-functional tunable dual-band plasmonic absorber consisting of a periodic array of elliptical grooves,” J. Opt., vol. 22, Art. no. 105005, 2020.
B. Beiranvand, A. S. Sobolev, and A. Sheikhaleh, “A proposal for a dual-band tunable plasmonic absorber using concentric-rings resonators and mono-layer graphene,” Optik, vol. 223, Art. no. 165587, 2020.
V. Kumar, “24 GHz graphene patch antenna array,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 34, no. 5, pp. 676-683, 2019.
S.-l. Wang, J.-S. Hong, Y. D., and Z.-j. Chen, “A frequency reconfigurable antenna based on few layer graphene,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 5, pp. 542-547,2021.
R. Bala, R. Singh, A. Marwaha, and S. Marwaha, “Wearable graphene based curved patch antenna for medical telemetry applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 31, no. 5, pp. 543-550, 2021.
R. Sordan, F. Traversi, and V. Russo, “Logic gates with a single graphene transistor,” Appl. Phys. Lett., vol. 94, Art. no. 073305, 2009. Available: https://doi.org/10.1063/ 1.3079663.
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotech, vol. 3, pp. 210-215, 2008.
P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, and M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano, vol. 6, no. 10, pp. 9118-9124, 2012.
I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi, and J.-H. Son, “Gate-controlled nonlinear conductivity of Dirac Fermion in graphene field-effect transistors measured by terahertz time-domain spectroscopy,” Nano Lett., vol. 12, no. 2, pp. 551-555, 2012.
L. Valentini, J. M. Kenny, F. Alimenti, and L. Roselli, “Planar MOSFET devices on paper substrate using graphene oxide film as gate dielectric,” in Proc. 2013 European Microwave Conference, pp. 5-8, 2013, doi: 10.23919/EuMC.2013.6686576.
J. S. Moon, D. Curtis, S. Bui, T. Marshall, D. Wheeler, I. Valles, S. Kim, E. Wang, X. Weng, and M. Fanton, “Top-gated graphene field-effect transistors using graphene on Si (111) wafers [J],” IEEE Electron. Device Lett., vol. 31, no. 11, pp. 1193-1195, 2010.
J. S. Moon, D. Curtis, M. Hu, D. Wong, C. Mcguire, P. Campbell, G. Jernigan, J. Tedesco, B. VanMil, R. Myers, Jr. Eddy, and D. K. Gaskill, “Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates,” IEEE Electron. Device Lett., vol. 30, no. 6, pp. 650-652, 2009.
K. Tamersit, “An ultra-sensitive gas nanosensor based on asymmetric dual-gate graphene nanoribbon field-effect transistor: Proposal and investigation,” J. Comput. Electron., vol. 18, no. 3, pp. 846-855, 2019.
J. P. Liu, S. Safavi-Naeini, and D. Ban, “Fabrication and measurement of graphene p–n junction with two top gates,” Electron. Lett., vol. 50, no. 23, pp. 1724-1726, 2014.
J. Sarker and A. Shifat, “An analytical approach for modeling of a top gated graphene based MOSFET[C],” in Proc. Int. Conf. Comput. Inform. Technol., IEEE, 2017.
S. Bardhan, M. Sahoo, and H. Rahaman, “Empirical drain current model of graphene field-effect transistor for application as a circuit simulation tool,” IETE J. Res., no. 3, pp. 1-13, 2019.
M. Weis, “Gradual channel approximation models for organic field-effect transistors: The spacecharge field effect,” J. App. Phys., vol. 111, Art. no. 054506, 2012.
B. Su, J. Huang, and J. Liu, “Current characteristics of double-top-gated graphene field effect transistor,” in Proc. 2021 IEEE 4th Int. Conf. Autom. Electron. Electr. Eng. (AUTEEE), Shenyang, China, Nov. 19-21, pp. 264-267, 2021.
A. Greene, S. Madisetti, P. Nagaiah, V. Tokranov, M. Yakimov, R. Moore, and S. Oktyabrsky, “InGaSb MOSFET channel on metamorphic buffer: Materials, interfaces and process options,” in Proc. 223th ECS Meeting, 2013.
P. D. Ye, A. T. Neal, T. Shen, J. J. Gu, M. L. Bolen, and M. A. Capano, “Atomic-layer-deposited high-k dielectric integration on epitaxial graphene,” ECS Trans., vol. 33, no. 3, pp. 459-466, 2010.