Perforated Dielectric Resonator Antenna Reflectarray

Authors

  • S. H. Zainud- Deen Department of Electronics and Electrical Engineering Menoufia University, Meouf, Egypt
  • K. H. Awadalla Department of Electronics and Electrical Engineering Menoufia University, Meouf, Egypt
  • S. M. Gaber Department of Electronics and Computer Engineering Higher Cairo Institute for Engineering, Egypt
  • A. M. Abd- Elhady Department of Electronics and Electrical Engineering Benha University, Egypt
  • A. A. Kishk Department of Electrical Engineering University of Mississippi, USA

Keywords:

Perforated Dielectric Resonator Antenna Reflectarray

Abstract

A wideband perforated rectangular dielectric resonator antenna (RDRA) reflectarray is presented. The arrays of RDRA are formed from one piece of materials. Air-filled holes are drilled into the material around the RDRA. This technique of fabricating RDRA reflectarray using perforations eliminates the need to position and bond individual elements in the reflectarray and makes the fabrication of the RDRA reflectarray feasible. The ground plane below the reflectarray elements is folded as a rectangular concave surface so that an air-gap is formed between the RDRA elements and the ground plane in order to increase the bandwidth. Full-wave analysis using the finite integration technique is applied. Three cases are studied. In the first one, the horn antenna is placed at the focal point to illuminate the reflectarray and the main beam in the broadside direction. In the second one, the horn antenna is placed at the focal point and the main beam at ±30 degrees off broadside direction. In the third one, an offset feed RDRA reflectarray is considered. A variable length RDRA provides the required phase shift at each cell on the reflectarray surface. The normalized gain patterns, the frequency bandwidth, and the aperture efficiency for the above cases are calculated.

Downloads

Download data is not yet available.

References

D. M. Pozar and T. A. Metzler, “Analysis of a

Reflectarray Antenna using Microstrip Patches

of Variable Size,” Electronics Letters., vol. 29,

pp. 657-658, Apr. 1993.

R. D. Javor, X. D. Wu, and K. Chang, “Design

and Performance of a Microstrip Reflectarray

Antenna,” IEEE Trans. Antennas Propagat., vol.

, pp. 932-939, Sept. 1995.

mm

Fig. 16. (a) Offset feed broadside reflectarray

with solid GP. (b) Offset feed broadside

reflectarray with perforated Gp and rectangular.

(b)

o

(a)

y z

x

mmm

Fig. 17. Normalized gain patterns at 12GHz for

×23 broadside RDRA reflectarray.

-180 -120 -60 0 60 120 180180

-80

-60

-40

-20

Elevation angle (degrees)

Normalized gain pattern(dBi)

E- plane at Φ = 90 o

H- plane at Φ = 0 o

Fig.18. Peak gain versus frequency for 17

degrees offset feed broadside RDRA

reflectarray.

5 11 11.5 12 12.5 13 13.5 14

Frequency(GHz)

Gain(dBi)

ZAINUD-DEEN, ET. AL.: PERFORATED DIELECTRIC RESONATOR ANTENNA REFLECTARRAY

M. R. Chaharmir, J. Shaker, M. Cuhaci, and A.

Sebak, “Reflectarray with Variable Slots on

Ground Plane,” IEE Proceedings Microwave

Antennas Propagat., vol. 150, pp. 436-439, Dec.

D. Cadoret, A. Laisné, R. Gillard, and H. Legay,

“A New Reflectarray Cell using Microstrip

Patches Loaded with Slots,” Microwave Optical

Technol. Lett., vol. 44, no. 3, pp. 270-272, Feb.

J. Huang and R. Pogorzelski, “A Ka-Band

Microstrip Reflectarray with Elements Having

Variable Rotation Angles,” IEEE Trans.

Antennas Propagat., vol. 46, pp. 650-656, May

J. Huang, “Analysis of a Microstrip Reflectarray

Antenna for Microspacecraft Applications,” TDA

Progress Report 42-120, pp.153-173, Feb. 1995.

J. Huang and J. A. Encinar, Reflectarray

Antennas, John Wiley & Sons, Inc., Hoboken,

NJ, 2007.

J. A. Encinar, “Design of Two-Layer Printed

Reflectarrays using Patches of Variable Size,”

IEEE Trans. Antennas Propagat., vol. 49,

pp.1403-1410, Oct. 2001.

S. A. Long, M. W. McAllister, and L. C. Shen,

"The Resonant Cylindrical Dielectric Cavity

Antenna," IEEE Trans. Antennas Propagat, vol.

, no. 3, pp. 406-412, March 1983.

A. A. Kishk, "Dielectric Resonator Antenna, A

Candidate for Radar Applications," IEEE Radar

Conference, pp. 258-264, 2003.

A. Petosa, Dielectric Resonator Antenna

Handbook, Artech House, Boston, USA, 2007.

S. H. Zainud-Deen, A. M. Abd-Elhady, A. A.

Mitkees, and A. A. Kishk, "Design of Dielectric

Resonator Reflectarray using Full-Wave

Analysis," 26th National Radio Science

Conference (NRSC 2009), Faculty of

Engineering, Future Univ., Egypt, B10, pp. 1-9,

March 2009.

A. M. Abd-Elhady, S. H. Zainud-Deen, A. A.

Mitkees, and A. A. Kishk, "X-Band Linear

Polarized Aperture-Coupled DRA Reflectarray,"

International Conference on Microwave

and Millimeter Wave Technology, Chengdu,

China, 2010.

A. M. Abd-Elhady and W. Hong "Ka-band

Linear Polarized Air Via Reflectarray," 1st

Middle East Conference on Antennas and

Propagation, (MECAP), Cairo, Egypt, 2010.

A. Petosa, A. Ittipiboon, and S. Thirakoune,

"Perforated Dielectric Resonator Antennas,"

Electronics Letters, vol. 38, no. 24, pp. 1493-

, Nov. 2002.

A. Petosa, S. Thirakoune, and A. Ittipiboon,

"Array of Perforated Dielectric Resonator

Antennas," IEEE Antennas and Propagation

Symp., Monterey, CA, USA, pp. 1006-1009,

A. Petosa, A. Ittipiboon, and S. Thirakoune,

"Investigation on Arrays of Perforated Dielectric

Fresnel Lenses," IEE Proceedings Microwave

Antennas Propagat., vol. 153, no. 3, pp. 270-

, June 2006.

R. Chair, A. A. Kishk, and K. F. Lee,

"Experimental Investigation for Wideband

Perforated Dielectric Resonator Antenna,"

Electronics Letters, vol. 42, no. 3, Feb. 2006.

A. A. Kishk, Y. Yin, and W. Glisson, “Conical

Dielectric Resonator Antennas for Wideband

Applications,” IEEE Trans. Antennas Propagat.,

vol. 50, no. 4, pp. 469–474, April 2002.

R. Chair, A. A. Kishk, K. F. Lee, and C. E.

Smith, “Wideband Flipped Staired Pyramid

Dielectric Resonator Antennas,” Electronics

Letters., vol. 40, pp. 581–582, May 2004.

A. A. Kishk, “Experimental Study of Broadband

Embedded Dielectric Resonator Antennas

Excited by a Narrow Slot,” IEEE Antennas

Wireless Propagat. Lett., vol. 4, pp. 79–81,

X.-L. Liang and T. A. Denidni, "Wideband

Rectangular Dielectric Resonator Antenna with a

Concave Ground Plane," IEEE Antennas

Wireless Propagat. Lett., vol. 8, pp. 367-370,

CST Microwave Studio, www.cst.com, 2009.

L. Di Rienzo, N. Ida, and S. Yuferev, “Surface

Impedance Boundary Conditions of High Order

of Approximation for the Finite Integration

Technique,” Applied Computational

Electromagnetic Society ( ACES) Journal, vol.

, no. 1, pp. 53-59, March 2007.

A. Ciccomancini Scogna and M. Strydom,

“Computational Electromagnetic Field

Calculation by Means of Finite Integration,”

Applied Computational Electromagnetic Society

(ACES) Journal, vol. 22, no. 2, pp. 17-41, 2007.

Downloads

Published

2022-05-02

How to Cite

[1]
S. H. Z.-. Deen, K. H. . Awadalla, S. M. . Gaber, A. M. A.-. Elhady, and A. A. . Kishk, “Perforated Dielectric Resonator Antenna Reflectarray”, ACES Journal, vol. 26, no. 10, pp. 848–855, May 2022.

Issue

Section

Articles