Application of the Normalized Surface Magnetic Source Model to a Blind Unexploded Ordnance Discrimination Test

Authors

  • Fridon Shubitidze Thayer School of Engineering Dartmouth College, Hanover, NH 03755-8000, USA
  • Juan Pablo Fernández Thayer School of Engineering Dartmouth College, Hanover, NH 03755-8000, USA
  • Irma Shamatava Sky Research, Inc. 112A-2386 East Mall, Vancouver, BC V6T 1Z3, Canada
  • Leonard R. Pasion Sky Research, Inc. 112A-2386 East Mall, Vancouver, BC V6T 1Z3, Canada
  • Benjamin E. Barrowes USA ERDC Cold Regions Research and Engineering Laboratory Hanover, NH 03755, USA
  • Kevin O’Neill USA ERDC Cold Regions Research and Engineering Laboratory Hanover, NH 03755, USA

Keywords:

Application of the Normalized Surface Magnetic Source Model to a Blind Unexploded Ordnance Discrimination Test

Abstract

The Normalized Surface Magnetic Source (NSMS) model is applied to unexploded ordnance (UXO) discrimination data collected at Camp Sibert, AL, with the EM63 electromagnetic induction sensor. The NSMS is a fast and accurate numerical forward model that represents an object’s response using a set of equivalent magnetic dipoles distributed on a surrounding closed surface. As part of the discrimination process one must also determine the location and orientation of each buried target. This is achieved using a physics-based technique that assumes a target to be a dipole and extracts the location from the measured magnetic field vector and the scalar magnetic potential; the latter is reconstructed from field measurements by means of an auxiliary layer of magnetic charges. Once the object’s location is estimated, the measured magnetic field is matched to NSMS predictions to determine the timedependent amplitudes of the surface magnetic sources, which in turn can be used to generate classifying features. This paper shows the superior discrimination performance of the NSMS model.

Downloads

Download data is not yet available.

References

B. Johnson et al. , “A research and

development strategy for unexploded

ordnance sensing,” tech. rep. EMP-1, MIT

Lincoln Lab, Lexington, MA, 1996.

Federal Advisory Committee for the

Development of Innovative Technologies,

“Unexploded ordnance (UXO): An

overview,” https://www.denix.osd.mil, 1996.

J. D. McNeill and M. Bosnar, “Application

of TDEM techniques to metal detection and

discrimination: a case history with the new

Geonics EM-63 fully time-domain metal

detector,” tech. note TN-32, Geonics LTD,

Mississauga, ON, 2000.

F. Shubitidze, K. O’Neill, B. Barrowes, I.

Shamatava, K. Sun, J. P. Fernández, and K.

D. Paulsen, “Application of the normalized

surface magnetic charge model to UXO

discrimination in cases with overlapping

signals,” J. Appl. Geophys., vol. 61, pp. 292–

, 2007.

F. Shubitidze, D. Karkas hadze, B. Barrowes,

I. Shamatava, and K. O’Neill, “A new

physics based approach for estimating a

buried object’s location, orientation and

magnetic polarization for EMI data,” J.

Environ. Eng. Geophys., vol. 13, pp. 115–

, 2008.

V. I. Arnold, Catastrophe Theory , second

edition, Springer, Berlin, 1986.

A. G. Kyurkchan, B. Yu. Sternin, and V. E.

Shatalov, “Singularities of continuation of

wave fields,” Phys. Usp., vol. 31, pp. 1221–

, 1996.

R. Zaridze, G. Bit-Babik, K. Tavzarashvili,

D. P. Economou, and N. K. Uzunoglu,

“Wave field singularity aspects in large-size

scatterers and inverse problems,” IEEE

Trans. Antennas Propag., vol. 50, pp. 50–58,

L. R. Pasion and D. W. Oldenburg, “A

discrimination algorithm for UXO using time

domain electromagnetics,” J. Environ. Eng.

Geophys., vol. 6, pp. 91–102, 2001.

J. Van Bladel, Electromagnetic Fields , first

edition, McGraw-Hill, New York, 1964.

F. S. Grant and G. F. West, Interpretation

Theory in Applied Geophysics , McGraw-

Hill, New York, 1965.

T. H. Bell, B. J. Barrow, and J. T. Miller,

“Subsurface discrimination using

electromagnetic induction sensors,” IEEE

Trans. Geosci. Remote Sens. , vol. 39, pp.

–1293, 2001.

Y. Zhang, L. Collins, H. Yu, C. E. Baum,

and L. Carin, “Sensing of unexploded

ordnance with magnetometer and induction

data: Theory and signal processing,” IEEE

Trans. Geosci. Remote Sens. , vol. 41, pp.

–1015, 2003.

K. Sun, K. O’Neill, F. Shubitidze, I.

Shamatava, and K. D. Paulsen, “Fast data-

Fig. 4. The total NSMS ratio Q(t15 ) / Q(t1 )

becomes a robust classifier when plotted against

the feature-space parameter k . The (red) crosses

that correspond to the mortars are particularly

well clustered and distin ctly separate from the

markers belonging to the other target types.

ACES JOURNAL, VOL. 25, NO. 1, JANUARY 2010

derived fundamental spheroidal excitation

models with application to UXO

discrimination,” IEEE Trans. Geosci.

Remote Sens., vol. 43, pp. 2573–2583, 2005.

J. P. Fernández, B. Barrowes, K. O’Neill, I.

Shamatava, F. Shubitidze, and K. Sun, “A

data-derived time-domain SEA for UXO

identification using the MPV sensor,” Proc.

SPIE, vol. 6953, no. 6953-1H, 2008.

F. Shubitidze, B. Barrowes, I. Shamatava, J.

P. Fernández, and K. O’Neill, “Data-derived

generalized SEA applied to MPV TD data,”

Applied Computational Electromagnetics

Symposium, Niagara Falls, Mar.–Apr. 2008.

I. Shamatava, F. Shubitidze, B. Barrowes, E.

Demidenko, J. P. Fernández, and K. O’Neill,

“The generalized SEA and a statistical signal

processing approach applied to UXO

discrimination,” Proc. SPIE, vol. 6953, no.

-53, 2008.

L.-P. Song, F. Shubitidze, L. R. Pasion, D.

W. Oldenburg, and S. D. Billings,

“Computing transient electromagnetic

responses of a metallic object using a

spheroidal excitation approach,” IEEE

Geosci. Remote Sens. Lett. , vol. 5, pp. 359–

, 2008.

D. Marquardt, “An algorithm for least-

squares estimation of non-linear parameters,”

SIAM J. Appl. Math., vol. 11, pp. 431–441,

I. Shamatava, F. Shubitidze, B. Barrowes, J.

P. Fernández, L. R. Pasion, and K. O’Neill,

“Applying the physically complete EMI

models to the ESTCP Camp Sibert Pilot

Study EM-63 data,” Proc. SPIE , vol. 7303,

no. 7303-23, 2009.

F. Shubitidze, B. Barrowe s, J. P. Fernández,

I. Shamatava, and K. O’Neill, “APG UXO

discrimination studies using advanced EMI

models and TEMTADS data,” Proc. SPIE ,

vol. 7303, no. 7303-21, 2009.

I. Shamatava, F. Shubitidze, B. Barrowes, J.

P. Fernández, and K. O’Neill, “Physically

complete models applied to BUD time-

domain EMI data,” Proc. SPIE , vol. 7303,

no. 7303-22, 2009

Downloads

Published

2022-06-17

How to Cite

[1]
F. . Shubitidze, J. P. . Fernández, I. . Shamatava, L. R. . Pasion, B. E. . Barrowes, and K. . O’Neill, “Application of the Normalized Surface Magnetic Source Model to a Blind Unexploded Ordnance Discrimination Test”, ACES Journal, vol. 25, no. 1, pp. 89–98, Jun. 2022.

Issue

Section

General Submission