Application of the Normalized Surface Magnetic Source Model to a Blind Unexploded Ordnance Discrimination Test
Keywords:
Application of the Normalized Surface Magnetic Source Model to a Blind Unexploded Ordnance Discrimination TestAbstract
The Normalized Surface Magnetic Source (NSMS) model is applied to unexploded ordnance (UXO) discrimination data collected at Camp Sibert, AL, with the EM63 electromagnetic induction sensor. The NSMS is a fast and accurate numerical forward model that represents an object’s response using a set of equivalent magnetic dipoles distributed on a surrounding closed surface. As part of the discrimination process one must also determine the location and orientation of each buried target. This is achieved using a physics-based technique that assumes a target to be a dipole and extracts the location from the measured magnetic field vector and the scalar magnetic potential; the latter is reconstructed from field measurements by means of an auxiliary layer of magnetic charges. Once the object’s location is estimated, the measured magnetic field is matched to NSMS predictions to determine the timedependent amplitudes of the surface magnetic sources, which in turn can be used to generate classifying features. This paper shows the superior discrimination performance of the NSMS model.
Downloads
References
B. Johnson et al. , “A research and
development strategy for unexploded
ordnance sensing,” tech. rep. EMP-1, MIT
Lincoln Lab, Lexington, MA, 1996.
Federal Advisory Committee for the
Development of Innovative Technologies,
“Unexploded ordnance (UXO): An
overview,” https://www.denix.osd.mil, 1996.
J. D. McNeill and M. Bosnar, “Application
of TDEM techniques to metal detection and
discrimination: a case history with the new
Geonics EM-63 fully time-domain metal
detector,” tech. note TN-32, Geonics LTD,
Mississauga, ON, 2000.
F. Shubitidze, K. O’Neill, B. Barrowes, I.
Shamatava, K. Sun, J. P. Fernández, and K.
D. Paulsen, “Application of the normalized
surface magnetic charge model to UXO
discrimination in cases with overlapping
signals,” J. Appl. Geophys., vol. 61, pp. 292–
, 2007.
F. Shubitidze, D. Karkas hadze, B. Barrowes,
I. Shamatava, and K. O’Neill, “A new
physics based approach for estimating a
buried object’s location, orientation and
magnetic polarization for EMI data,” J.
Environ. Eng. Geophys., vol. 13, pp. 115–
, 2008.
V. I. Arnold, Catastrophe Theory , second
edition, Springer, Berlin, 1986.
A. G. Kyurkchan, B. Yu. Sternin, and V. E.
Shatalov, “Singularities of continuation of
wave fields,” Phys. Usp., vol. 31, pp. 1221–
, 1996.
R. Zaridze, G. Bit-Babik, K. Tavzarashvili,
D. P. Economou, and N. K. Uzunoglu,
“Wave field singularity aspects in large-size
scatterers and inverse problems,” IEEE
Trans. Antennas Propag., vol. 50, pp. 50–58,
L. R. Pasion and D. W. Oldenburg, “A
discrimination algorithm for UXO using time
domain electromagnetics,” J. Environ. Eng.
Geophys., vol. 6, pp. 91–102, 2001.
J. Van Bladel, Electromagnetic Fields , first
edition, McGraw-Hill, New York, 1964.
F. S. Grant and G. F. West, Interpretation
Theory in Applied Geophysics , McGraw-
Hill, New York, 1965.
T. H. Bell, B. J. Barrow, and J. T. Miller,
“Subsurface discrimination using
electromagnetic induction sensors,” IEEE
Trans. Geosci. Remote Sens. , vol. 39, pp.
–1293, 2001.
Y. Zhang, L. Collins, H. Yu, C. E. Baum,
and L. Carin, “Sensing of unexploded
ordnance with magnetometer and induction
data: Theory and signal processing,” IEEE
Trans. Geosci. Remote Sens. , vol. 41, pp.
–1015, 2003.
K. Sun, K. O’Neill, F. Shubitidze, I.
Shamatava, and K. D. Paulsen, “Fast data-
Fig. 4. The total NSMS ratio Q(t15 ) / Q(t1 )
becomes a robust classifier when plotted against
the feature-space parameter k . The (red) crosses
that correspond to the mortars are particularly
well clustered and distin ctly separate from the
markers belonging to the other target types.
ACES JOURNAL, VOL. 25, NO. 1, JANUARY 2010
derived fundamental spheroidal excitation
models with application to UXO
discrimination,” IEEE Trans. Geosci.
Remote Sens., vol. 43, pp. 2573–2583, 2005.
J. P. Fernández, B. Barrowes, K. O’Neill, I.
Shamatava, F. Shubitidze, and K. Sun, “A
data-derived time-domain SEA for UXO
identification using the MPV sensor,” Proc.
SPIE, vol. 6953, no. 6953-1H, 2008.
F. Shubitidze, B. Barrowes, I. Shamatava, J.
P. Fernández, and K. O’Neill, “Data-derived
generalized SEA applied to MPV TD data,”
Applied Computational Electromagnetics
Symposium, Niagara Falls, Mar.–Apr. 2008.
I. Shamatava, F. Shubitidze, B. Barrowes, E.
Demidenko, J. P. Fernández, and K. O’Neill,
“The generalized SEA and a statistical signal
processing approach applied to UXO
discrimination,” Proc. SPIE, vol. 6953, no.
-53, 2008.
L.-P. Song, F. Shubitidze, L. R. Pasion, D.
W. Oldenburg, and S. D. Billings,
“Computing transient electromagnetic
responses of a metallic object using a
spheroidal excitation approach,” IEEE
Geosci. Remote Sens. Lett. , vol. 5, pp. 359–
, 2008.
D. Marquardt, “An algorithm for least-
squares estimation of non-linear parameters,”
SIAM J. Appl. Math., vol. 11, pp. 431–441,
I. Shamatava, F. Shubitidze, B. Barrowes, J.
P. Fernández, L. R. Pasion, and K. O’Neill,
“Applying the physically complete EMI
models to the ESTCP Camp Sibert Pilot
Study EM-63 data,” Proc. SPIE , vol. 7303,
no. 7303-23, 2009.
F. Shubitidze, B. Barrowe s, J. P. Fernández,
I. Shamatava, and K. O’Neill, “APG UXO
discrimination studies using advanced EMI
models and TEMTADS data,” Proc. SPIE ,
vol. 7303, no. 7303-21, 2009.
I. Shamatava, F. Shubitidze, B. Barrowes, J.
P. Fernández, and K. O’Neill, “Physically
complete models applied to BUD time-
domain EMI data,” Proc. SPIE , vol. 7303,
no. 7303-22, 2009