Electromagnetic Modeling of Electronic Device by Electrical Circuit Parameters

Authors

  • Diego De Moura Department of Electrical Engineering Federal University of Santa Catarina, Florianópolis, 88040-970, Brazil
  • Adroaldo Raizer Department of Electrical Engineering Federal University of Santa Catarina, Florianópolis, 88040-970, Brazil

Keywords:

Electrical circuit parameters, electromagnetic modeling, electronic device, IBIS model, internal activity

Abstract

This article proposes an electric model to determine the values of the electric fields of an electronic device. When applying the method, the integrated circuit device will be modeled on the resistance, inductance and capacitance values (R, L, C parameters) provided by the IBIS (Input/Output Buffer Information Specification), also considering the internal activity of the integrated circuit. The electric parameters of the printed circuit board tracks will be extracted by software based on the moments method and fast multipole method. Simulations of the electric model are performed in the time and frequency domain by the Fourier transform, and from the obtained harmonics, the values of the electric fields are calculated with software based on the finite elements method. Measurements were performed in order to validate the simulations.

Downloads

Download data is not yet available.

References

IBIS, Electronic Behavioral Specifications of Digital Integrated Circuits I/O Buffer Information Specification, International Electrotechnical Commission (IEC) 62014-1, 2003.

P. Pulici, A. Girardi, G. P. Vanalli, R. Izzi, G. Bernardi, G. Ripamonti, A. G. M. Strollo, and G. Campardo, “A modified IBIS model aimed at signal integrity analysis of systems in package,” IEEE Transactions on Circuits and Syst., vol. 55, no. 7, pp. 1921-1928, Aug. 2008.

B. B. M’Hamed, F. Torrès, A. Reineix, and P. Hoffmann, “Complete time-domain diode modeling: application to off-chip and on-chip protection devices,” IEEE Trans. on Electromagn. Compat., vol. 53, no. 2, pp. 349-365, May 2011.

N. Monnereau, F. Caignet, N. Nolhier, M. Bafleur, and D. Tremouilles, “Investigation of modeling system ESD failure and probability using IBIS ESD models,” IEEE Trans. on Device and Materials Reliability, vol. 12, no. 4, pp. 599-606, Dec. 2012.

I/O Interface Model for Integrated Circuits (IMIC), International Electrotechnical Commission (IEC) 62404, 2003.

O. Wada, Y. Fukumoto, H. Osaka, W. Zhi Liang, O. Shibata, S. Matsunaga, T. Watanabe, E. Takahashi, and R. Koga, “High-speed simulation of PCB emission and immunity with frequencydomain IC/LSI source models,” in Proc. IEEE Int. Symp. Electromagn. Compat., vol. 1, pp. 4-9, 2003.

K. Ichikawa, M. Inagaki, Y. Sakurai, I. Iwase, M. Nagata, and O. Wada, “Simulation of integrated circuit immunity with LECCS model,” in Proc. 17th Int. Symp. Electromagn. Compat., Zurich, Switzerland, pp. 308-311, 2006.

Integrated Circuits Emission Model (ICEM), International Electrotechnical Commission (IEC) 62014-3, 2004.

K. Iokibe, R. Higashi, T. Tsuda, K. Ichikawa, K. Nakamura, Y. Toyota, and R. Koga, “Modeling of microcontroller with multiple power supply pins for conducted EMI simulations,” in Proc. 2012 IEEE Int. Symp. Electrical Design of Advanced Packaging and Systems, Seoul, Korea, pp. 135- 138, 2008.

T. Ibuchi and T. Funaki, “A study on EMI noise source modeling with current source for power conversion circuit,” in Proc. 2012 IEEE Int. Symp. Electromagn. Compat., EMCEUROPE, Rome, Italy, pp. 1-6, 2012.

K. Iokibe and Y. Toyota, “Estimation of datadependent power voltage variations of FPGA by equivalent circuit modeling from on-board measurements,” in Proc. 2013 Int. Workshop Electromagn. Compat. Integr. Circuits, EMCCOMPO, Nara, Japan, pp. 175-179, 2013.

C. Labussière-Dorgan, S. Bendhia, E. Sicard, J. Tao, H. J. Quaresma, C. Lochot, and B. Vrignon, “Modeling the electromagnetic emission of a microcontroller using a single model,” IEEE Trans. on Electromagn. Compat., vol. 50, no. 1, pp. 22-34, Feb. 2008.

B. Vrignon, S. Delmas Bendhia, E. Lamoureux, and E. Sicard, “Characterization and modeling of parasitic emission in deep submicron CMOS,” IEEE Trans. on Electromagn. Compat., vol. 47, no. 2, pp. 382-387, May 2005.

N. Berbel, R. F. Garcia, and I. Gil, “Characterization and modeling of the conducted emission of integrated circuits up to 3 GHz,” IEEE Trans. on Electromagn. Compat., vol. 56, no. 4, pp. 382-387, Aug. 2014.

D. Daroui and J. Ekman, “Parallel implementation of the PEEC method,” Journal of Applied Computat. Electromag. Society, vol. 25, no. 5, pp. 410-422, 2010.

G. Antonini, “Fast multipole formulation for PEEC frequency domain modeling,” Journal of Applied Computat. Electromag. Society, vol. 17, no. 3, Nov. 2002.

D. Daroui and J. Ekman, “Efficient PEEC-based simulations using reluctance method for power electronic applications,” Journal of Applied Computat. Electromag. Society, vol. 27, no. 10, pp. 830-841, 2012.

F. Freschi and M. Repetto, “A general framework for mixed structured/unstructured PEEC modelling,” Journal of Applied Computat. Electromag. Society, vol. 23, no. 3, pp. 200-206, 2008.

(2014). [Online]. Available: http://www.ecliptek.com/ oscillators/EHH11/.

H. W. Ott, Noise Reduction Techniques in Electronic Systems, 2nd ed., New York: Wiley-Interscience, 1988.

(2014). [Online]. Available: http://www.ecliptek.com/ IBIS/ehh11a.ibs.

Ansys Q3D Extractor, ver. 15.0, Ansys Corporation, Canonsburg, PA, Estados Unidos, 2014.

Ansys Designer, ver. 8.0, Ansys Corporation, Canonsburg, PA, Estados Unidos, 2012.

Ansys High Frequency Structure Simulation (HFSS), ver. 15.0, Ansys Corporation, Canonsburg, PA, Estados Unidos, 2014.

Z. J. Cendes, “Vector finite elements for electromagnetic field computation,” IEEE Trans. Magnetics, vol. 27, pp. 3958-3966, Sep. 1991.

Z. J. Cendes and J. F. Lee, “The transfinite element method for modeling MMIC devices,” IEEE Trans. on MTT, vol. 36, pp. 1639-49, Dec. 1988.

Radio Disturbance and Immunity Measuring Apparatus, CISPR 22, ed. 6, International Electrotechnical Commission (2008).

J. Liu and J.-M. Jin, “A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems,” IEEE Trans. Antennas Propagat., vol. 49, no. 12, pp. 1794-1806, Dec. 2001.

J. Ekman, Electromagnetic Modeling Using the Partial Element Equivalent Circuit Method, Ph.D. Theses, EISLAB, LuleÂ, Sweden, 2003.

X. Wang, D. Liu, W. Yu, and Z. Wang, “Improved boundary element method for fast 3-D interconnect resistance extraction,” IEICE Trans. on Electronics, vol. E88-C, no. 2, pp. 232-240, Feb. 2005.

K. Nabors and J. White, “FastCap: a multipole accelerated 3-D capacitance extraction program,” IEEE Trans. Computer-Aided Design, vol. 10, no. 11, pp. 1447-1459, 1991.

M. Kamon, M. J. Tsuk, and J. K. White, “Fasthenry: a multipole accelerated 3-D inductance extraction program,” IEEE Trans. Microwave Theory Tech., pp. 1750-1758, Sep. 1994.

(2015) [Online] https://www.rohde-schwarz.com/en/ product/hz-14_3-productstartpage_63493- 11717.html.

A. C. Balanis, Antenna Theory Analysis and Design, 3 rd ed., New Jersey, John Wiley & Sons, Inc.

Downloads

Published

2021-08-18

How to Cite

[1]
D. D. . Moura and A. . Raizer, “Electromagnetic Modeling of Electronic Device by Electrical Circuit Parameters”, ACES Journal, vol. 31, no. 01, pp. 58–65, Aug. 2021.

Issue

Section

General Submission