Analysis of ElectromagneticWave Propagation in Frequency Bands of Nonlinear Metamaterials
Keywords:
Analysis of ElectromagneticWave Propagation in Frequency Bands of Nonlinear MetamaterialsAbstract
Electromagnetic wave propagation phenomena in nonlinear metamaterials are investigated for waves propagating either in the left-handed frequency band or in the frequency band gaps. In the left-handed band, we implement directly the reductive perturbation method to Faraday’s and Amp´ere’s laws and derive a second-and a thirdorder nonlinear Schr¨odinger (NLS) equation, describing solitons of moderate and ultra-short pulse widths, respectively. Then, we find necessary conditions and derive exact bright and dark soliton solutions of these equations. On the other hand, in the frequency band gaps with negative linear effective permittivity and positive permeability (where linear electromagnetic waves are evanescent), we derive two short-pulse equations (SPEs) for the high- and low-frequency band gaps. The structure of the SPEs solutions is discussed, and connections with the NLS soliton solutions are presented. Numerical simulations of the SPEs solutions are included and compared with those of the reduced wave equations. Directions towards the modelling of wave propagation in nonlinear chiral metamaterials are pointed out.
Downloads
References
G. V. Eleftheriades and K. G. Balmain, Negative-
Refraction Metamaterials. Fundamental Principles
and Applications, John Wiley, New Jersey, 2005.
C. Caloz and T. Itoh, Electromagnetic Metama-
terials. Transmission Line Theory and Microwave
Applications, John Wiley, New Jersey, 2006.
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-
Nasser, and S. Schultz, “Composite Medium with
Simultaneously Negative Permeability and Permit-
tivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187,
May 2000.
A. Shelby, D. R. Smith, and S. Schultz, “Experi-
mental Verification of a Negative Index of Refrac-
tion,” Science, vol. 292, pp. 77-79, Apr. 2001.
M. C. Tang, S. Q. Xiao, D. Wang, J. Xiong,
K. Chen, and B. Z. Wang, “Negative Index of
Reflection in Planar Metamaterial Composed of
Single Split-Ring Resonators,” ACES J., vol. 26,
pp. 250-258, Mar. 2011.
V. Shalaev, “Optical Negative-Index Metamateri-
als,” Nature Photonics, vol. 1, pp. 41-48, Jan. 2007.
V. G. Veselago, “Electrodynamics of Substances
with Simultaneously Negative Values of Sigma and
Mu,” Sov. Phys. Usp., vol. 10, pp. 509, 1968.
J. B. Pendry, “Negative Refraction Makes a Perfect
Lens,” Phys. Rev. Lett., vol. 85, pp. 3966-3969,
Oct. 2000.
D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire,
“Metamaterials and Negative Refractive Index,”
Science, vol. 305, pp. 788-792, Aug. 2004.
J. B. Pendry and D. R. Smith, “Reversing Light
with Negative Refraction,” Phys. Today, vol. 57,
pp. 37-43, Jun. 2004.
S. A. Ramakrishna, “Physics of Negative Refrac-
tive Index Materials,” Rep. Prog. Phys., vol. 68,
pp. 449-521, Feb. 2005.
C. M. Soukoulis, M. Kafesaki, and
E. N. Economou, “Negative-Index Materials:
New Frontiers in Optics,” Adv. Materials, vol. 18,
pp. 1941-1952, Aug. 2006.
J. C. Liu, W. Shao, and B. Z. Wang, “A Dual-Band
Metamaterial Design using Double SRR Struc-
tures,” ACES J., vol. 26, pp. 459-463, Jun. 2011.
Y. Huang, G. Wen, T. Li, and K. Xie, “Positive-
Negative-Positive Metamaterial Consisting of Fer-
rimagnetic Host and Wire Array,” ACES J., vol. 25,
pp. 696-702, Aug. 2010.
G. Antonini, “Reduced Order Models for Meta-
material Transmission Lines,” ACES Newsletter,
vol. 21, pp. 78-103, 2006.
A. A. Zharov, I. V. Shadrivov, and Yu. S. Kivshar,
“Nonlinear Properties of Left-Handed Metamateri-
als,” Phys. Rev. Lett., vol. 91, 037401, Jul. 2003.
V. M. Agranovich, Y. R. Shen, R. H. Baughman,
and A. A. Zakhidov, “Linear and Nonlinear Wave
Propagation in Negative Refraction Metamateri-
als,” Phys. Rev. B, vol. 69, 165112, Apr. 2004.
N. Lazarides and G. P. Tsironis, “Coupled Non-
linear Schr ̈odinger Field Equations for Electro-
magnetic Wave Propagation in Nonlinear Left-
Handed Materials,” Phys. Rev. E, vol. 71, 036614,
Mar. 2005.
I. V. Shadrivov, A. A. Zharov, N. A. Zharova, and
Yu. S. Kivshar, “Nonlinear Left-Handed Metamate-
rials,” Radio Science, vol. 40, RS3S90, May 2005.
M. Scalora, M. S. Syrchin, N. Akozbek, E. Y. Po-
liakov, G. D’Aguanno, N. Mattiucci, M. J. Bloe-
mer, and A. M. Zheltikov, “Generalized Nonlinear
Schrodinger Equation for Dispersive Susceptibil-
ity and Permeability: Application to Negative In-
dex Materials,” Phys. Rev. Lett., vol. 95, 013902,
Jul. 2005.
S. C. Wen, Y. J. Xiang, X. Y. Dai, Z. X. Tang,
W. H. Su, and D. Y. Fan, “Theoretical Models
for Ultrashort Electromagnetic Pulse Propagation
in Nonlinear Metamaterials,” Phys. Rev. A, vol. 75,
, Mar. 2007.
I. V. Shadrivov and Yu. S. Kivshar, “Spatial Soli-
tons in Nonlinear Left-Handed Metamaterials,” J.
Opt. A: Pure Appl. Opt., vol. 7, pp. S68-S72,
Feb. 2005.
A. Aceves, “Optical Gap Solitons: Past, Present,
and Future; Theory and Experiments,” Chaos,
vol. 10, pp. 584-589, Sep. 2000.
S. Longhi, “Gap Solitons in Metamaterials,” Waves
in Random and Complex Media, vol. 15, pp. 119-
, Feb. 2005.
T. Sch ̈afer and C. E. Wayne, “Propagation of Ultra-
Short Optical Pulses in Cubic Nonlinear Media,”
Physica D, vol. 196, pp. 90-105, Sep. 2004.
N. Costanzino, V. Manukian, and C. K. R. T. Jones,
“Solitary Waves of the Regularized Short Pulse
and Ostrovsky Equations,” SIAM J. Math. Anal.,
vol. 41, pp. 2088-2106, 2009.
N. L. Tsitsas, N. Rompotis, I. Kourakis,
P. G. Kevrekidis, and D. J. Frantzeskakis,
“Higher-Order Effects and Ultrashort Solitons
in Left-Handed Metamaterials,” Phys. Rev. E,
vol. 79, 037601, Mar. 2009.
N. L. Tsitsas, T. P. Horikis, Y. Shen,
P. G. Kevrekidis, N. Whitaker, and
D. J. Frantzeskakis, “Short Pulse Equations
and Localized Structures in Frequency Band
Gaps of Nonlinear Metamaterials,” Phys. Let. A,
vol. 374, pp. 1384-1388, Mar. 2010.
I. Kourakis and P. K. Shukla, “Nonlinear Prop-
agation of Electromagnetic Waves in Negative-
Refraction-Index Composite Materials,” Phys. Rev.
E, vol. 72, 016626, Jul. 2005.
T. Taniuti, “Reductive Perturbation Method and
Far Fields of Wave-Equations,” Prog. Theor. Phys.
Suppl., vol. 55, pp. 1-35, 1974.
Y. Kodama and A. Hasegawa, “Nonlinear Pulse-
Propagation in a Monomode Dielectric Guide,”
IEEE J. Quantum Electron., vol. 23, pp. 510-524,
May 1987.
A. Hasegawa and Y. Kodama, Solitons in Optical
Communications, Clarendon Press, Oxford, 1995.
J. V. Moloney and A. C. Newell, Nonlinear Optics,
Westview Press, Oxford, 2004.
G. P. Agrawal, Nonlinear Fiber Optics, Academic
Press, London, 2007.
K. Hizanidis, D. J. Frantzeskakis, and C. Polymilis,
“Exact Travelling Wave Solutions for a General-
ized Nonlinear Schrodinger Equation,” J. Phys. A:
Math. Gen., vol. 29, pp. 7687-7703, Dec. 1996.
L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Mag-
netically Tunable Negative Permeability Metama-
terial Composed by Split Ring Resonators and
Ferrite Rods,” Opt. Express, vol. 16, pp. 8825-
, Jun. 2008.
S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck,
N. C. Panoiu, and R. M. Osgood, “Near-Infrared
Double Negative Metamaterials,” Opt. Express,
vol. 13, pp. 4922-4930, Jun. 2005.
R. Camassa and D. D. Holm, “An Integrable
Shallow-Water Equation with Peaked Solitons,”
Phys. Rev. Lett., vol. 71, pp. 1661-1664, Sep. 1993.
A. Sakovich and S. Sakovich, “Solitary Wave So-
lutions of the Short Pulse Equation,” J. Phys. A:
Math. Gen., vol. 39, pp. L361-L367, Jun. 2006.
T. G. Mackay and A. Lakhtakia, “Plane Waves with
Negative Phase Velocity in Faraday Chiral Medi-
ums,” Phys. Rev. E, vol. 69, 026602, Feb. 2004.
J. B. Pendry, “A Chiral Route to Negative Refrac-
tion,” Science, vol. 306, pp. 1353-1355, Nov. 2004.
V. Demir, A. Z. Elsherbeni, and E. Arvas, “FDTD
Formulation for Dispersive Chiral Media using
the Z Transform Method,” IEEE Trans. Antennas
Propagat., vol. 53, pp. 3374-3384, Oct. 2005.
N. Wongkasem, A. Akyurtlu, K. A. Marx,
Q. Dong, J. Li, and W .D. Goodhue, “Development
of Chiral Negative Refractive Index Metamateri-
als for the Terahertz Frequency Regime,” IEEE
Trans. Antennas Propagat., vol. 55, pp. 3052-3062,
Nov. 2007.
N. L. Tsitsas, A. Lakhtakia, and
D. J. Frantzeskakis, “Vector Solitons in Nonlinear
Isotropic Chiral Metamaterials,” J. Phys. A: Math.
Theor., vol. 44, 435203, Oct. 2011.