Smoothed Particle Electromagnetics Modelling on HPC-GRID Environment
Keywords:
Smoothed Particle Electromagnetics Modelling on HPC-GRID EnvironmentAbstract
In this paper a meshless approach on a high performance grid computing environment to run fast onerous electromagnetic numerical simulations, is presented. The grid computing and the message passing interface standard have been employed to improve the computational efficiency of the Smoothed Particle Electromagnetics meshless solver adopted. Applications involving an high number of particles can run on a grid computational environment simulating complex domains not accessible before and offer a promising approach for the coupling of particle models to continuous models. The used meshless solver is straightforward to program and fully parallelizable. The results of the parallel numerical scheme are reported and tested on a transverse electric propagation case study taken into account to assess the computational performance.
Downloads
References
Y. Yu, Z. Chen, A 3-D Radial Point Interpolation
Method for Meshless Time-Domain Modeling,”
IEEE Transactions on Microwave Theory and
Techniques, vol. 57, no. 8, pp. 2015-2020, 2009
Y. Yu, Z. Chen, “Towards the development of an
unconditionally stable time-domain meshless
method,” IEEE Transactions on Microwave Theory
and Techniques, vol. 58, no. 3, pp. 578-586, 2010.
X. Chen; Z. Chen; Y. Yu; D. Su, An
Unconditionally Stable Radial Point Interpolation
Meshless Method With Laguerre Polynomials,”
IEEE Transactions on Microwave Theory and
Techniques, vol. 59, no. 10, pp. 3756-3763, 2011.
Richard K. Gordon, W. Elliott Hutchcraft, “The
Use of Multiquadric Radial Basis Functions in
Open Region Problems,”Applied Computational
Electromagnetics Society (ACES) Journal, vol. 21,
no. 2, pp. 127 – 134, July 2006.
T. Iwashita, M. Shimasaki, J. Lu, “Parallel ICCG
Solvers for a Finite-Element Eddy-Current
Analysis on Heterogeneous ParallelComputation
Environment,” Applied Computational
Electromagnetics Society (ACES) Journal, vol. 22,
no. 2, pp. 195 – 200, July 2007.
I. González, E. García, F. Saez de Adana, M. F.
Cátedra, “MONURBS: A Parallelized Fast
Multipole Multilevel Code Analyzing Complex
Bodies Modeled by NURBS Surfaces,”Applied
Computational Electromagnetics Society (ACES)
Journal, vol. 23, no. 2, pp. 134 – 142, June 2008.
R. A. Gingold, J. J. Monaghan, “Smoothed Particle
Hydrodynamics: Theory and Application to Non
spherical Stars”, Mon. Not. Roy. Astron. Soc.,
vol.181, pp. 375-389, 1977.
G. R. Liu, M.B. Liu, Smoothed Particle
Hydrodynamics - a Mesh-Free Particle Method,
World Scientic Publishing, Singapore, 2003.
L. B. Lucy, “A numerical approach to the testing of
fusion process”, The Astronomical Journal, vol.
, pp. 1013-1024, 1977.
J. J. Monaghan, J. C. Lattanzio, “A refined particle
method for astrophysical problems”,
Astron.Astrophys, vol. 149, pp.135–143, 1985.
J. J. Monaghan, “An introduction to SPH”,
Comput. Phys. Commun, vol. 48, pp. 89-96, 1988.
J. J. Monaghan, “Smoothed particle
hydrodynamics”, Annu. Rev. Astron. Astrophys,
vol. 30, pp. 543–574, 1992.
T. Belytschko, Y. Krongauz, D. Organ, M.
Fleming, P. Krysl,“Meshless methods: an
overview and recent developments”, Comput.
Meth. Appl. Mech. Eng., vol. 139, pp. 3–47, 1996.
G. R. Liu, Mesh Free Methods—Moving beyond
the Finite Element Method, CRC Press,
BocaRaton, 2003.
P. Laguna, “Smoothed particle interpolation”,
Astrophys. J., vol. 439 , pp. 814–821, 1995.
G. Ala, E. Francomano, “An improved Smoothed
Particle Electromagnetics method in 3D time
domain simulations”, International Journal of
Numerical Modelling: Electronic Networks,
Devices and Fields, DOI: 10.1002 /jnm.834, 2011.
G. Ala, G. Di Blasi, E. Francomano, “A numerical
meshless particle method in solving the
magnetoencephalography forward problem”,
International Journal of Numerical Modelling:
Electronic Networks, Devices and Fields, DOI:
1002 /jnm.1828, 2012.
M. N. O. Sadiku, Numerical Techniques in
Electromagnetics, CRC Press, Boca Raton, FL,
D. M. Sullivan, Electromagnetic Simulation Using
the FDTD Method, IEEE Press, New York, 2000.
J. P. Berenger, “A Perfectly Matched Layer for the
Absorption of Electromagnetic Waves”, Journal of
Computational Physics, vol. 114, pp. 185-200,
D. P. Bertesekas, J.N. Tsitsiklis, Parallel and
Distributed Computation Numerical Methods,
Prentice Hall, 1989