Analysis of Super-Solar Integrated Patch Antenna for Sub-6 GHz and Beyond 6 GHz Millimeter Wave 5G Applications

Authors

  • Suresh Babu T. Naganathan Department of Electronics and Communication Engineering, Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu-603 319, India
  • Sivakumar Dhandapani Department of Computer Science and Engineering, AMET University, Kanathur-603 112, Tamilnadu, India
  • Thirumaraiselvan Packirisamy Department of Electronics and Communication Engineering, Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu-603 319, India

DOI:

https://doi.org/10.13052/2022.ACES.J.371004

Keywords:

5G applications, integrated antennas, mm-wave, patch antennas, solar cell

Abstract

This article describes a new compact parasitic patch-loaded transparent patch antenna with a copper ground plane for wireless-fidelity (Wi-Fi) and 5thgeneration (5G) millimeter-wave (mm-wave) applications. The proposed antenna uses two rectangular parasitic patches with a rectangular main radiation patch. The L-shaped strips are also added to the main radiation patch and one of the rectangular parasitic patches to cover both the sub-6 GHz and beyond 6 GHz mm-wave 5G frequency spectrums. The same transparent patch antenna with a solar ground plane is built, and its effect is parametrically studied alongside the integration of a polycrystalline silicon solar cell. The proposed antennas with a dimension of 42x30x2 mm23 are fabricated and experimentally validated for impedance and radiation characteristics. In terms of impedance bandwidth, the proposed copper ground plane antenna offers 36.89% (5.04-7.32 GHz), 5.15% (14.35-15.11 GHz), 6.23% (27.08-28.79 GHz), and 21.34% (31.64-39.81 GHz). The solar cell serves as both a photovoltaic generator and the ground plane of the transparent antenna. The same radiating patch with a solar ground plane offers impedance bandwidth of 36.03% (4.47-6.56 GHz), 14.4% (9.6-11.12 GHz), 2.55% (22.14-22.71 GHz), and 27.9% (28.79-39.05 GHz) for 5G applications.

Downloads

Download data is not yet available.

Author Biographies

Suresh Babu T. Naganathan, Department of Electronics and Communication Engineering, Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu-603 319, India

Suresh Babu T. Naganathan received a B.E. degree in Electronics and Communication Engineering from Madurai Kamaraj University, India, in 1997 and an M.E. degree in Power Electronics and Drives from Anna University, India, in 2009, respectively. He is currently working as an Assistant Professor in the Department of Electronics and Communication Engineering at Adhiparasakthi Engineering College, Tamilnadu, India. His research interests include those in the areas of electromagnetics, antenna design, and wave propagation.

Sivakumar Dhandapani, Department of Computer Science and Engineering, AMET University, Kanathur-603 112, Tamilnadu, India

Sivakumar Dhandapani received a B.E. degree in Electronics and Communication Engineering from the University of Madras, India, in 1995, an M.E. degree in Process Control and Instrumentation from Annamalai University, India, in 2002, and the Ph.D. degree in Faculty of Information and Communication from Anna University, India, in 2010, respectively. He is now a Professor at AMET University, Tamil Nadu, India.

Thirumaraiselvan Packirisamy, Department of Electronics and Communication Engineering, Adhiparasakthi Engineering College, Melmaruvathur, Tamilnadu-603 319, India

Thirumaraiselvan Packirisamy received B.E. degree in Electronics and Communication Engineering from Allagappa Chettiar College of Engineering and Technology, Karaikudi in 1992 and M.E. degree in Telecommunication Engineering from Multimedia University, Malaysia in 2006. He completed Ph.D. in Information and Communication Engineering at Anna University, Chennai in 2018. He has more than 30 years of experience in teaching and research and currently working as Professor in Adhiparasakthi Engineering College, Melmaruvathur. His research interests include Wireless Communication, Body Area Networks, Electromagnetic Wave Propagation and Biomedical Engineering. He has published several research papers in reputed journals and international conferences.

References

R. Dangi, P. Lalwani, G. Choudhary, I. You, and G. Pau, “Study and investigation on 5G technology: A systematic review,” Sensors, vol. 22, no. 1, pp. 1-32, 2021.

J. Kurvinen, H. Kähkönen, A. Lehtovuori, J. Ala-Laurinaho, and V. Viikari, “Co-designed mm-wave and LTE handset antennas,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1545-1553, 2019.

M. I. Magray, G. S. Karthikeya, K. Muzaffar, and S. K. Koul, “Corner bent integrated design of 4G LTE and mm-wave 5G antennas for mobile terminals,” Prog. Electromagn. Res. M, vol. 84, pp. 167-175, 2019.

I. S. Masoodi, I. Ishteyaq, K. Muzaffar, and M, I. Magray, “Low-cost substrate based compact antennas for 4G/5G side-edge panel smartphone applications,” Prog. Electromagn. Res. Lett., vol. 91, pp. 145-152, 2020.

J. Khan, D. A. Sehrai, and S. Ahmad, “Design and performance comparison of metamaterial-based antenna for 4G/5G mobile devices,” Int. J. Electron. Commun. Eng., vol. 12, no. 6, pp. 382-387, 2018.

M. Ikram, E. A. Abbas, N. Nguyen-Trong, K. H. Sayidmarie, and A. Abbosh, “Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G Mobile handsets,” IEEE Trans. Antennas Propag., vol. 67, no. 12, pp. 7225-7233, 2019.

N. Kumar and R. Khanna, “A two element MIMO antenna for sub-6 GHz and mm-Wave 5G systems using characteristics mode analysis,” Microw. Opt. Technol. Lett., pp. 1-9, Sep. 2020.

R. B. Di Renna, V. P. R. M. Souza, T. N. Ferreira, L. J. Matos, J. A. M. Souza, and G. L. Siqueira, “A new double-sided substrate-integrated waveguide slot array antenna for 5G applications,” Microw. Opt. Technol. Lett., vol. 61, no. 3, pp. 1-6, 2018.

H. A. Diawuo and Y.-B. Jung, “Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 7, pp. 1286-1290, 2018.

D. Liu, X. Gu, C. W. Baks, and A. Valdes-Garcia, “Antenna-in-package design considerations for Ka-band 5G communication applications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6372-6379, 2017.

J. Park, D. Choi, and W. Hong, “Millimeter-wave phased-array antenna-in-package (AiP) using stamped metal process for enhanced heat dissipation,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 11, pp. 2355-2359, 2019.

N. Shoaib, S. Shoaib, R. Y. Khattak, I. Shoaib, X. Chen and A. Perwaiz, “MIMO antennas for smart 5G devices,” IEEE Access, vol. 6, pp. 77014-77021, 2018.

Z. Wani, M. P. Abegaonkar, and S. K. Koul, “Millimeter-wave antenna with wide-scan angle radiation characteristics for MIMO applications,” Int. J. RF Microw. Comput. Aided Eng., vol. 29, no.5, pp. 1-9, 2019.

G. S. Karthikeya, S. K. Koul, Ajay K. Poddar, and U. Rohde, “Ultra-compact orthogonal pattern diversity antenna module for 5G smartphones,” Microw. Opt. Technol. Lett., pp. 1-10, Mar. 2020.

R. M. Moreno, J. Ala-Laurinaho, A. Khripkov, J. Ilvonen, and V. Viikari, “Dual-polarized mm-wave end-fire antenna for mobile devices,” IEEE Trans. Antennas Propag., vol. 68, no. 8, pp. 5924-5934, 2020.

S. F. Jilani, and A. Alomainy, “Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks,” IET Microw. Antennas Propag., vol. 12, no. 5, pp. 672-677, 2018.

K. R. Mahmoud and A. M. Montaser, “Optimised 4 ×

millimetre-wave antenna array with DGS using hybrid ECFO-NM algorithm for 5G mobile networks,” IET Microw. Antennas Propag., vol. 11, no. 11, pp. 1516-1523, 2017.

T. Li and Z. N. Chen, “A dual-band metasurface antenna using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5620-5624, 2018.

W. Wan, M. Xue, L. Cao, T. Ye, and Q. Wang, “Low-profile broadband patch-driven metasurface antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 7, pp. 1251-1255, 2020.

M. J. Jeong, N. Hussain, J. W. Park, S. G. Park, S. Y. Rhee, and N. Kim, “Millimeter-wave microstrip patch antenna using vertically coupled split ring metaplate for gain enhancement,” Microw. Opt. Technol. Lett., pp. 1-6, 2019.

M. Jeong, N. Hussain, A. Abbas, S. Y. Rhee, S. M. Lee, S.-K. Gil and N. Kim, “Performance improvement of microstrip patch antenna using a novel double-layer concentric rings metaplate for 5G millimeter wave applications,” Int. J. RF Microw. Comput. Aided Eng., vol. 31, no. 2, pp. 1-10,2020.

M. Khalily, R. Tafazolli, P. Xiao, and A. A. Kishk, “Broadband mm-wave microstrip patch array antenna with improved radiation characteristics for different 5G applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641-4647, 2018.

J. Xu, W. Hong, Z. H. Jiang, and H. Zhang, “Wideband, low-profile patch array antenna with corporate stacked microstrip and substrate integrated waveguide feeding structure,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 1368-1373,2019.

P. Ramanujam, C. Arumugam, R. Venkatesan, and M. Ponnusamy, “Design of compact patch antenna with enhanced gain and bandwidth for 5G mm-wave applications,” IET Microw. Antennas Propag., vol. 14, no. 12, pp. 1455-1461, 2020.

M. Xue, W. Wan, Q. Wang, and L. Cao, “Low-profile millimetre-wave wideband microstrip antenna with parasitic patch arrays,” IET Microw. Antennas Propag., vol. 15, pp. 364-370,2021.

M. S. Rahimi, E. V. Pinto dos Anjos, P. Taghikhani, and V. Volski, “A cost-efficient 28 GHz integrated antenna array with full impedance matrix characterization for 5G NR,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 4, pp. 666-670, 2020.

I. L. de Paula, S. Lemey, D. Bosman, Q. Van den Brande, O. Caytan, J. Lambrecht, M. Cauwe, G. Torfs, and H. Rogier, “Cost-effective high-performance air-filled SIW antenna array for the global 5G 26 GHz and 28 GHz bands,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 2, pp. 194-198, 2021.

X. Wang, X. Liu, W. Zhang, D. Hao, and Y. Liu, “Surface-mount PIFA using ball grid array packaging for 5G mm-Wave,” Prog. Electromagn. Res. Lett., vol. 98, pp. 55-60, 2021.

X. Wang, X. Liu, W. Zhang, D. Hao, and Y. Liu, “Surface mounted microstrip antenna using ball grid array packaging for mm-Wave systems integration,” Prog. Electromagn. Res. Lett., vol. 98, pp. 105-111, 2021.

X. Liu, W. Zhang, D. Hao, and Y. Liu, “Surface-mount bowtie antenna element for millimeter-wave applications,” Microw. Opt. Technol. Lett., pp. 1-7, 2020.

X. Liu, W. Zhang, D. Hao, and Y. Liu, “Cost-effective surface-mounted patch antenna with ring slot using ball grid array packaging for 5G millimeter-wave applications,” Prog. Electromagn. Res. Lett., vol. 99, pp. 127-133, 2021.

N. -C. Liu and J. -H. Tarng, “Double-curved metal in multilayer printed circuit boards for bandwidth enhancement of millimeter-wave patch antennas,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 11, no. 7, pp. 1088-1096, 2021.

Y. He, S. Lv, L. Zhao, G. -L. Huang, X. Chen, and W. Lin, “A Compact dual-band and dual-polarized millimeter-wave beam scanning antenna array for 5G mobile terminals,” IEEE Access, vol. 9, pp. 109042-109052, 2021.

R. Mittra, A. Nasri, and R. Kumar Arya, “Wide-Angle Scanning Antennas for Millimeter-Wave 5G Applications,” Engineering, vol. 11, pp. 60-71, 2022.

M. Asaadi and A. Sebak, “High-gain low-profile circularly polarized slotted SIW cavity antenna for MMW applications,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 752-755, 2017.

H. Chen, Y. Shao, Y. Zhang, C. Zhang, and Z. Zhang, “A low-profile broadband circularly polarized mm-wave antenna with special-shaped ring slot,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 7, pp. 1492-1496, 2019.

H. U. Tahseen, L. Yang, and W. Hongjin, “A dual-array antenna system for 5G millimeter-wave applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 10, pp. 1319-1324, 2021.

N. F. Sallehuddin, M. H. Jamaluddin, M. R. Kamarudin, and M. H. Dahri, “Reflectarray resonant element based on a dielectric resonator antenna for 5G applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 7, pp. 844-851, 2021.

N. O. Parchin, O. M. Dardeer, A. S.I. Amar, C. H. See, and R. Abd-Alhameed, “Dual-band phased array 5G mobile-phone antenna with switchable and hemispherical beam pattern coverage for MIMO-diversity communications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 12, pp. 1602-1609,2021.

M. Tanaka, Y. Suzuki, K. Araki, and R. Suzuki, “Microstrip antenna with solar cells for microsatellites,” Electronics Letters, vol. 31, no. 1, pp. 5-6, 1995.

T. N. Suresh babu and D. Sivakumar, “Stepped slot patch antenna with copper ground plane and solar cell ground plane for future mobile communications,” Prog. Electromagn. Res. C, vol. 98, pp. 187-198, 2020.

S. Vaccaro, C. Pereira, J. R. Mosig, and P. de Maagt, “In-flight experiment for combined planar antennas and solar cells (SOLANT),” IET Microw. Antennas Propag., vol. 3, no. 8, pp. 1279-1287,2009.

S. V. Shynu, J. Roo Ons Maria, J. Ammann Max, and B. Norton, “Dual band a-Si:H solar-slot antenna for 2.4/5.2 GHz WLAN applications,” Radioengineering, vol. 18, no. 4, pp. 354-358,2009.

O. Yurduseven and D. Smith, “A solar cell stacked multi-slot quad-band PIFA for GSM, WLAN and WiMAX networks,” IEEE Microw.Wireless Compon.Lett., vol. 23, no. 6, pp. 285-287,2013.

O. Yurduseven and D. Smith, “Solar cell stacked dual-polarized patch antenna for 5.8 GHz band WiMAX network,” Electronics Letters, vol. 49, no. 24, pp. 1514-1515, 2013.

R. Caso, A. D’Alessandro, A. Michel, and P. Nepa, “Integration of slot antennas in commercial photovoltaic panels for stand-alone communication systems,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 62-69, 2013.

M. Elsdon, O. Yurduseven, and X. Dai, “Wideband metamaterial solar cell antenna for 5 GHz Wi-Fi communication,” Prog. Electromagn. Res. C, vol. 71, pp. 123-131, 2017.

B. Bai, Z. Zhang, X. Li, C. Sun, and Y. Liu, “Integration of microstrip slot array antenna with dye-sensitized solar cells,” Sensors, vol. 20, no. 6257, pp. 1-13, 2020.

T. W. Turpin and R. Baktur, “Meshed patch antennas integrated on solar cells,” IEEE Antennas Wirel. Propag. Lett., vol. 8, pp. 693-696, 2009.

T. Yasin and R. Baktur, “Circularly polarized meshed patch antenna for small satellite application,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 1057-1060, 2013.

S. Sheikh, “Circularly polarized meshed patch antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 352-355, 2016.

KS. K. Podilchak, D. Comite, B. K. Montgomery Brendan, Y. Li, V. Gómez-Guillamón Buendía, and Y. M. M. Antar, “Solar-panel integrated circularly polarized meshed patch for cubesats and other small satellites,” IEEE Access, vol. 7, no. 96560-96566, 2019.

T. Yasin, R. Baktur, T. Turpin, and J. Arellano, “Analysis and design of highly transparent meshed patch antenna backed by a solid ground plane,” Prog. Electromagn. Res. M, vol. 56, pp. 133-144, 2017.

O. Yurduseven, D. Smith, and M. Elsdon, “UWB meshed solar monopole antenna,” Electronics Letters, vol. 49, no. 9, 2013.

F. Nashad, S. Foti, D. Smith, M. Elsdon, and O. Yurduseven, “Ku-band suspended meshed patch antenna integrated with solar cells for remote area applications,” Prog. Electromagn. Res. C, vol. 83, pp. 245-254, 2018.

T. Yekan and R. Baktur, “An X band patch antenna integrated with commercial triple-junction space solar cells,” Microw. Opt. Technol. Lett., vol. 59, no. 2, Dec. 2017.

M. J. Roo-Ons, S. V. Shynu, M. J. Ammann, S. J. McCormack, and B. Norton, “Transparent patch antenna on a-Si thin-film glass solar module,” Electronics Letters, vol. 47, no. 2, pp. 85-86, 2011.

T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1844-1853, 2014.

B. Xi, X. Liang, Q. Chen, K. Wang, J. Geng, and R. Jin, “Optical transparent antenna array integrated with solar cell,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 3, pp. 457-461, 2020.

P. Dreyer, M. Morales-Masis, S. Nicolay, C. Ballif, and J. Perruisseau-Carrier, “Copper and transparent-conductor reflectarray elements on thin-film solar cell panels,” IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3813-3818, 2014.

Y.n-S. Chen, Y.-H. Wu, and C.-C. Chung, “Solar-powered active integrated antennas backed by a transparent reflectarray for cubesat applications,” IEEE Access, vol. 8, no. 137934-137946,2020.

T. Alam, A. F. Almutairi, M. Samsuzzaman, M. Cho, and M. T. Islam, “Metamaterial array-based meander line planar antenna for cube satellite communication,” Scientific Reports, vol. 11, no. 14087, pp. 1-12, 2021.

S. B. T. Naganathan and S. Dhandapani, “Patch antenna integrated on solar cells for green wireless communication: A feature oriented survey and design issues,” Int. J. RF Microw. Comput. Aided Eng., vol. 32, no. 1, pp. 1-29, 2021.

A. Kumar and S. Sharma, “Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies,” Prog. Electromagn. Res., vol. 69, pp. 47-54, 2007.

C. Steiner, S. Walter, V. Malashchuk, G. Hagen, I. Kogut, H. Fritze, and R. Moos, “Determination of the dielectric properties of storage materials for exhaust gas aftertreatment using the microwave cavity perturbation method,” Sensors, vol. 20, pp. 1-18, 2020.

R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House inc., Norwood, January 2001.

Downloads

Published

2022-10-31

How to Cite

[1]
S. B. T. . Naganathan, S. . Dhandapani, and T. . Packirisamy, “Analysis of Super-Solar Integrated Patch Antenna for Sub-6 GHz and Beyond 6 GHz Millimeter Wave 5G Applications”, ACES Journal, vol. 37, no. 10, pp. 1039–1050, Oct. 2022.