Analysis of Super-Solar Integrated Patch Antenna for Sub-6 GHz and Beyond 6 GHz Millimeter Wave 5G Applications
DOI:
https://doi.org/10.13052/2022.ACES.J.371004Keywords:
5G applications, integrated antennas, mm-wave, patch antennas, solar cellAbstract
This article describes a new compact parasitic patch-loaded transparent patch antenna with a copper ground plane for wireless-fidelity (Wi-Fi) and 5thgeneration (5G) millimeter-wave (mm-wave) applications. The proposed antenna uses two rectangular parasitic patches with a rectangular main radiation patch. The L-shaped strips are also added to the main radiation patch and one of the rectangular parasitic patches to cover both the sub-6 GHz and beyond 6 GHz mm-wave 5G frequency spectrums. The same transparent patch antenna with a solar ground plane is built, and its effect is parametrically studied alongside the integration of a polycrystalline silicon solar cell. The proposed antennas with a dimension of 42x30x2 mm23 are fabricated and experimentally validated for impedance and radiation characteristics. In terms of impedance bandwidth, the proposed copper ground plane antenna offers 36.89% (5.04-7.32 GHz), 5.15% (14.35-15.11 GHz), 6.23% (27.08-28.79 GHz), and 21.34% (31.64-39.81 GHz). The solar cell serves as both a photovoltaic generator and the ground plane of the transparent antenna. The same radiating patch with a solar ground plane offers impedance bandwidth of 36.03% (4.47-6.56 GHz), 14.4% (9.6-11.12 GHz), 2.55% (22.14-22.71 GHz), and 27.9% (28.79-39.05 GHz) for 5G applications.
Downloads
References
R. Dangi, P. Lalwani, G. Choudhary, I. You, and G. Pau, “Study and investigation on 5G technology: A systematic review,” Sensors, vol. 22, no. 1, pp. 1-32, 2021.
J. Kurvinen, H. Kähkönen, A. Lehtovuori, J. Ala-Laurinaho, and V. Viikari, “Co-designed mm-wave and LTE handset antennas,” IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1545-1553, 2019.
M. I. Magray, G. S. Karthikeya, K. Muzaffar, and S. K. Koul, “Corner bent integrated design of 4G LTE and mm-wave 5G antennas for mobile terminals,” Prog. Electromagn. Res. M, vol. 84, pp. 167-175, 2019.
I. S. Masoodi, I. Ishteyaq, K. Muzaffar, and M, I. Magray, “Low-cost substrate based compact antennas for 4G/5G side-edge panel smartphone applications,” Prog. Electromagn. Res. Lett., vol. 91, pp. 145-152, 2020.
J. Khan, D. A. Sehrai, and S. Ahmad, “Design and performance comparison of metamaterial-based antenna for 4G/5G mobile devices,” Int. J. Electron. Commun. Eng., vol. 12, no. 6, pp. 382-387, 2018.
M. Ikram, E. A. Abbas, N. Nguyen-Trong, K. H. Sayidmarie, and A. Abbosh, “Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G Mobile handsets,” IEEE Trans. Antennas Propag., vol. 67, no. 12, pp. 7225-7233, 2019.
N. Kumar and R. Khanna, “A two element MIMO antenna for sub-6 GHz and mm-Wave 5G systems using characteristics mode analysis,” Microw. Opt. Technol. Lett., pp. 1-9, Sep. 2020.
R. B. Di Renna, V. P. R. M. Souza, T. N. Ferreira, L. J. Matos, J. A. M. Souza, and G. L. Siqueira, “A new double-sided substrate-integrated waveguide slot array antenna for 5G applications,” Microw. Opt. Technol. Lett., vol. 61, no. 3, pp. 1-6, 2018.
H. A. Diawuo and Y.-B. Jung, “Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 7, pp. 1286-1290, 2018.
D. Liu, X. Gu, C. W. Baks, and A. Valdes-Garcia, “Antenna-in-package design considerations for Ka-band 5G communication applications,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6372-6379, 2017.
J. Park, D. Choi, and W. Hong, “Millimeter-wave phased-array antenna-in-package (AiP) using stamped metal process for enhanced heat dissipation,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 11, pp. 2355-2359, 2019.
N. Shoaib, S. Shoaib, R. Y. Khattak, I. Shoaib, X. Chen and A. Perwaiz, “MIMO antennas for smart 5G devices,” IEEE Access, vol. 6, pp. 77014-77021, 2018.
Z. Wani, M. P. Abegaonkar, and S. K. Koul, “Millimeter-wave antenna with wide-scan angle radiation characteristics for MIMO applications,” Int. J. RF Microw. Comput. Aided Eng., vol. 29, no.5, pp. 1-9, 2019.
G. S. Karthikeya, S. K. Koul, Ajay K. Poddar, and U. Rohde, “Ultra-compact orthogonal pattern diversity antenna module for 5G smartphones,” Microw. Opt. Technol. Lett., pp. 1-10, Mar. 2020.
R. M. Moreno, J. Ala-Laurinaho, A. Khripkov, J. Ilvonen, and V. Viikari, “Dual-polarized mm-wave end-fire antenna for mobile devices,” IEEE Trans. Antennas Propag., vol. 68, no. 8, pp. 5924-5934, 2020.
S. F. Jilani, and A. Alomainy, “Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks,” IET Microw. Antennas Propag., vol. 12, no. 5, pp. 672-677, 2018.
K. R. Mahmoud and A. M. Montaser, “Optimised 4 ×
millimetre-wave antenna array with DGS using hybrid ECFO-NM algorithm for 5G mobile networks,” IET Microw. Antennas Propag., vol. 11, no. 11, pp. 1516-1523, 2017.
T. Li and Z. N. Chen, “A dual-band metasurface antenna using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5620-5624, 2018.
W. Wan, M. Xue, L. Cao, T. Ye, and Q. Wang, “Low-profile broadband patch-driven metasurface antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 7, pp. 1251-1255, 2020.
M. J. Jeong, N. Hussain, J. W. Park, S. G. Park, S. Y. Rhee, and N. Kim, “Millimeter-wave microstrip patch antenna using vertically coupled split ring metaplate for gain enhancement,” Microw. Opt. Technol. Lett., pp. 1-6, 2019.
M. Jeong, N. Hussain, A. Abbas, S. Y. Rhee, S. M. Lee, S.-K. Gil and N. Kim, “Performance improvement of microstrip patch antenna using a novel double-layer concentric rings metaplate for 5G millimeter wave applications,” Int. J. RF Microw. Comput. Aided Eng., vol. 31, no. 2, pp. 1-10,2020.
M. Khalily, R. Tafazolli, P. Xiao, and A. A. Kishk, “Broadband mm-wave microstrip patch array antenna with improved radiation characteristics for different 5G applications,” IEEE Trans. Antennas Propag., vol. 66, no. 9, pp. 4641-4647, 2018.
J. Xu, W. Hong, Z. H. Jiang, and H. Zhang, “Wideband, low-profile patch array antenna with corporate stacked microstrip and substrate integrated waveguide feeding structure,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 1368-1373,2019.
P. Ramanujam, C. Arumugam, R. Venkatesan, and M. Ponnusamy, “Design of compact patch antenna with enhanced gain and bandwidth for 5G mm-wave applications,” IET Microw. Antennas Propag., vol. 14, no. 12, pp. 1455-1461, 2020.
M. Xue, W. Wan, Q. Wang, and L. Cao, “Low-profile millimetre-wave wideband microstrip antenna with parasitic patch arrays,” IET Microw. Antennas Propag., vol. 15, pp. 364-370,2021.
M. S. Rahimi, E. V. Pinto dos Anjos, P. Taghikhani, and V. Volski, “A cost-efficient 28 GHz integrated antenna array with full impedance matrix characterization for 5G NR,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 4, pp. 666-670, 2020.
I. L. de Paula, S. Lemey, D. Bosman, Q. Van den Brande, O. Caytan, J. Lambrecht, M. Cauwe, G. Torfs, and H. Rogier, “Cost-effective high-performance air-filled SIW antenna array for the global 5G 26 GHz and 28 GHz bands,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 2, pp. 194-198, 2021.
X. Wang, X. Liu, W. Zhang, D. Hao, and Y. Liu, “Surface-mount PIFA using ball grid array packaging for 5G mm-Wave,” Prog. Electromagn. Res. Lett., vol. 98, pp. 55-60, 2021.
X. Wang, X. Liu, W. Zhang, D. Hao, and Y. Liu, “Surface mounted microstrip antenna using ball grid array packaging for mm-Wave systems integration,” Prog. Electromagn. Res. Lett., vol. 98, pp. 105-111, 2021.
X. Liu, W. Zhang, D. Hao, and Y. Liu, “Surface-mount bowtie antenna element for millimeter-wave applications,” Microw. Opt. Technol. Lett., pp. 1-7, 2020.
X. Liu, W. Zhang, D. Hao, and Y. Liu, “Cost-effective surface-mounted patch antenna with ring slot using ball grid array packaging for 5G millimeter-wave applications,” Prog. Electromagn. Res. Lett., vol. 99, pp. 127-133, 2021.
N. -C. Liu and J. -H. Tarng, “Double-curved metal in multilayer printed circuit boards for bandwidth enhancement of millimeter-wave patch antennas,” IEEE Trans. Compon. Packag. Manuf. Technol., vol. 11, no. 7, pp. 1088-1096, 2021.
Y. He, S. Lv, L. Zhao, G. -L. Huang, X. Chen, and W. Lin, “A Compact dual-band and dual-polarized millimeter-wave beam scanning antenna array for 5G mobile terminals,” IEEE Access, vol. 9, pp. 109042-109052, 2021.
R. Mittra, A. Nasri, and R. Kumar Arya, “Wide-Angle Scanning Antennas for Millimeter-Wave 5G Applications,” Engineering, vol. 11, pp. 60-71, 2022.
M. Asaadi and A. Sebak, “High-gain low-profile circularly polarized slotted SIW cavity antenna for MMW applications,” IEEE Antennas Wirel. Propag. Lett., vol. 16, pp. 752-755, 2017.
H. Chen, Y. Shao, Y. Zhang, C. Zhang, and Z. Zhang, “A low-profile broadband circularly polarized mm-wave antenna with special-shaped ring slot,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 7, pp. 1492-1496, 2019.
H. U. Tahseen, L. Yang, and W. Hongjin, “A dual-array antenna system for 5G millimeter-wave applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 10, pp. 1319-1324, 2021.
N. F. Sallehuddin, M. H. Jamaluddin, M. R. Kamarudin, and M. H. Dahri, “Reflectarray resonant element based on a dielectric resonator antenna for 5G applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 7, pp. 844-851, 2021.
N. O. Parchin, O. M. Dardeer, A. S.I. Amar, C. H. See, and R. Abd-Alhameed, “Dual-band phased array 5G mobile-phone antenna with switchable and hemispherical beam pattern coverage for MIMO-diversity communications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 12, pp. 1602-1609,2021.
M. Tanaka, Y. Suzuki, K. Araki, and R. Suzuki, “Microstrip antenna with solar cells for microsatellites,” Electronics Letters, vol. 31, no. 1, pp. 5-6, 1995.
T. N. Suresh babu and D. Sivakumar, “Stepped slot patch antenna with copper ground plane and solar cell ground plane for future mobile communications,” Prog. Electromagn. Res. C, vol. 98, pp. 187-198, 2020.
S. Vaccaro, C. Pereira, J. R. Mosig, and P. de Maagt, “In-flight experiment for combined planar antennas and solar cells (SOLANT),” IET Microw. Antennas Propag., vol. 3, no. 8, pp. 1279-1287,2009.
S. V. Shynu, J. Roo Ons Maria, J. Ammann Max, and B. Norton, “Dual band a-Si:H solar-slot antenna for 2.4/5.2 GHz WLAN applications,” Radioengineering, vol. 18, no. 4, pp. 354-358,2009.
O. Yurduseven and D. Smith, “A solar cell stacked multi-slot quad-band PIFA for GSM, WLAN and WiMAX networks,” IEEE Microw.Wireless Compon.Lett., vol. 23, no. 6, pp. 285-287,2013.
O. Yurduseven and D. Smith, “Solar cell stacked dual-polarized patch antenna for 5.8 GHz band WiMAX network,” Electronics Letters, vol. 49, no. 24, pp. 1514-1515, 2013.
R. Caso, A. D’Alessandro, A. Michel, and P. Nepa, “Integration of slot antennas in commercial photovoltaic panels for stand-alone communication systems,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 62-69, 2013.
M. Elsdon, O. Yurduseven, and X. Dai, “Wideband metamaterial solar cell antenna for 5 GHz Wi-Fi communication,” Prog. Electromagn. Res. C, vol. 71, pp. 123-131, 2017.
B. Bai, Z. Zhang, X. Li, C. Sun, and Y. Liu, “Integration of microstrip slot array antenna with dye-sensitized solar cells,” Sensors, vol. 20, no. 6257, pp. 1-13, 2020.
T. W. Turpin and R. Baktur, “Meshed patch antennas integrated on solar cells,” IEEE Antennas Wirel. Propag. Lett., vol. 8, pp. 693-696, 2009.
T. Yasin and R. Baktur, “Circularly polarized meshed patch antenna for small satellite application,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 1057-1060, 2013.
S. Sheikh, “Circularly polarized meshed patch antenna,” IEEE Antennas Wirel. Propag. Lett., vol. 15, pp. 352-355, 2016.
KS. K. Podilchak, D. Comite, B. K. Montgomery Brendan, Y. Li, V. Gómez-Guillamón Buendía, and Y. M. M. Antar, “Solar-panel integrated circularly polarized meshed patch for cubesats and other small satellites,” IEEE Access, vol. 7, no. 96560-96566, 2019.
T. Yasin, R. Baktur, T. Turpin, and J. Arellano, “Analysis and design of highly transparent meshed patch antenna backed by a solid ground plane,” Prog. Electromagn. Res. M, vol. 56, pp. 133-144, 2017.
O. Yurduseven, D. Smith, and M. Elsdon, “UWB meshed solar monopole antenna,” Electronics Letters, vol. 49, no. 9, 2013.
F. Nashad, S. Foti, D. Smith, M. Elsdon, and O. Yurduseven, “Ku-band suspended meshed patch antenna integrated with solar cells for remote area applications,” Prog. Electromagn. Res. C, vol. 83, pp. 245-254, 2018.
T. Yekan and R. Baktur, “An X band patch antenna integrated with commercial triple-junction space solar cells,” Microw. Opt. Technol. Lett., vol. 59, no. 2, Dec. 2017.
M. J. Roo-Ons, S. V. Shynu, M. J. Ammann, S. J. McCormack, and B. Norton, “Transparent patch antenna on a-Si thin-film glass solar module,” Electronics Letters, vol. 47, no. 2, pp. 85-86, 2011.
T. Peter, T. A. Rahman, S. W. Cheung, R. Nilavalan, H. F. Abutarboush, and A. Vilches, “A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1844-1853, 2014.
B. Xi, X. Liang, Q. Chen, K. Wang, J. Geng, and R. Jin, “Optical transparent antenna array integrated with solar cell,” IEEE Antennas Wirel. Propag. Lett., vol. 19, no. 3, pp. 457-461, 2020.
P. Dreyer, M. Morales-Masis, S. Nicolay, C. Ballif, and J. Perruisseau-Carrier, “Copper and transparent-conductor reflectarray elements on thin-film solar cell panels,” IEEE Trans. Antennas Propag., vol. 62, no. 7, pp. 3813-3818, 2014.
Y.n-S. Chen, Y.-H. Wu, and C.-C. Chung, “Solar-powered active integrated antennas backed by a transparent reflectarray for cubesat applications,” IEEE Access, vol. 8, no. 137934-137946,2020.
T. Alam, A. F. Almutairi, M. Samsuzzaman, M. Cho, and M. T. Islam, “Metamaterial array-based meander line planar antenna for cube satellite communication,” Scientific Reports, vol. 11, no. 14087, pp. 1-12, 2021.
S. B. T. Naganathan and S. Dhandapani, “Patch antenna integrated on solar cells for green wireless communication: A feature oriented survey and design issues,” Int. J. RF Microw. Comput. Aided Eng., vol. 32, no. 1, pp. 1-29, 2021.
A. Kumar and S. Sharma, “Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies,” Prog. Electromagn. Res., vol. 69, pp. 47-54, 2007.
C. Steiner, S. Walter, V. Malashchuk, G. Hagen, I. Kogut, H. Fritze, and R. Moos, “Determination of the dielectric properties of storage materials for exhaust gas aftertreatment using the microwave cavity perturbation method,” Sensors, vol. 20, pp. 1-18, 2020.
R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House inc., Norwood, January 2001.