Ultra-wideband Terahertz Absorber Based on E Shape Graphene Pattern
DOI:
https://doi.org/10.13052/2023.ACES.J.380207Keywords:
absorber, broadband, graphene, tunableAbstract
We present a tunable ultra-wideband (UWB) absorber based on a multilayer of “E” shaped graphene patterns. The numerically calculated results indicate that the absorption of the proposed design is above 95% in the range of 1.12 to 14.04 THz. By using the multiple layers of graphene, the relative bandwidth is 95% and reaches up to 170% of the central frequency. Furthermore, for transverse electric polarization mode at a resonating frequency of 1.68, 3.99, 7.51, 13.56, and 17.74 THz the absolute value exceeds 99.57, 99.37, 99.94, 99.86, and 99.09%, respectively. Also, owing to the structure’s rotational symmetry, the absorber is insensitive to both transverse magnetic (TM) and transverse electric (TE) polarization. The absorption peaks and frequency band can be controlled effectively by altering the Fermi level of graphene without modifying the structure manually. Moreover, the absorber exhibits steady absorption over an incident angle of 0o to 60o, with just a minor decrease in bandwidth around 60o.
Downloads
References
J. Federici and L. Moeller, “Review of terahertz and sub terahertz wireless communications,” Journal of Applied Physics, vol. 107, no. 11, pp. 111101-111101-22, 2010.
P. U. Jepsen, D. G. Cooke, M. Koch, and P. Reviews, “Terahertz spectroscopy and imaging–modern techniques and applications,” Laser & Photonics Reviews, vol. 5, no. 1, pp. 124-166, 2011.
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature, vol. 474, no. 7349, pp. 64-67, 2011.
H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Optics Express, vol. 16, no. 10, pp. 7181-7188, 2008.
X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. J. P. S. Yan, “Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators,” Photonic Sensors, vol. 8, no. 4, pp. 367-374, 2018.
H. Lin, X. Ye, X. Chen, Z. Zhou, Z. Yi, G. Niu, Y. Yi, Y. Hua, J. Hua, and S. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Materials Research Express, vol. 6, no. 4, pp. 0-8, 2019.
Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García De Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano, vol. 7, no. 3, pp. 2388-2395, 2013.
S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Physical Review Letters, vol. 108, no. 4, pp. 1-5, 2012.
V. Kumar, “24 GHz graphene patch antenna array,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 34, no. 5, pp. 676-683, 2019.
S.-L. Wang, J.-S. Hong, Y. Deng, and Z.-J. Chen, “A frequency reconfigurable antenna based on few layers graphene,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 5, pp. 542-547, 2021.
R. Bala, R. Singh, A. Marwaha, and S. Marwaha, “Wearable graphene based curved patch antenna for medical telemetry applications,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 31, no. 5, pp. 543-550,2016.
J. Huang, Y. Wu, B. Su, and J. Liu, “Preparation and electrical testing of double top gate graphene field-effect transistor,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 37, no. 7, pp. 774-781, 2022.
M. Sajjad, X. Kong, S. Liu, S. U. Rahman, and J. Han, “Design of ultra-wideband tunable cross polarization converter based on a graphene,” International Applied Computational Electromagnetics Society (ACES) Symposium, Nanjing, China, pp. 1-2, August 2019.
L. Guo, S. Li, X. Jiang, X. Liao, and L. Peng, “Ultra-wideband transmissive linear polarization device based on graphene,” Applied Computational Electromagnetics Society (ACES) Journal, vol. 36, no. 7, pp. 914-921, 2021.
M. Huang, Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, “Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle,” Optics Communications, vol. 415, pp. 194-201, 2018.
S. Biabanifard, M. Biabanifard, S. Asgari, S. Asadi, and C. Mustapha, “Tunable ultra-wideband terahertz absorber based on graphene disks and ribbons,” Optics Communications, vol. 427, pp. 418-425, 2018.
Y. Dong, P. Liu, D. Yu, G. Li, L. J. I. A. Yang, and W. P. Letters, “A tunable ultrabroadband ultrathin terahertz absorber using graphene stacks,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1115-1118, 2016.
B. Xiao, M. Gu, and S. Xiao, “Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays,” Applied Optics, vol. 56, pp. 5458-5462, 2017.
H. P. Xin, F. Liu, G. J. Ren, H. L. Zhao, and J. Q. Yao, “A liquid crystals modulated optical tunable filter based on Fano resonance of Au nanorod trimer,” Optics Express, vol. 389, pp. 92-96, 2017.
P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” Journal of Applied Physics, vol. 109, no. 4, pp. 043505-043505-5, 2011.
N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Induced transparency at the Drude damping limit,” Nature Materials, vol. 8, pp. 758-763, 2009.
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nature Nanotechnology, vol. 5, no. 10, pp. 722-726, 2010.
A. Khavasi, “Design of ultra-broadband graphene absorber using circuit theory,” Journal of the Optical Society of America B, vol. 32, pp. 1941-1946, 2015.
C. Hwang, D. A. Siegel, S. K. Mo, W. Regan, A. Ismach, Y. Zhang, A. Zettl, and A. Lanzara, “Fermi velocity engineering in graphene by substrate modification,” Scientific Reports, vol. 2, pp. 1-4, 2012.
G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” Journal of Applied Physics, vol. 103, no. 6, pp. 064302-064302-8, 2008.
W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano, vol. 6, no. 9, pp. 7806-7813, 2012.
S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Optics Express, vol. 23, no. 7, pp. 8888-8900, 2015.
L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nature Nanotechnology, vol. 6, no. 10, pp. 630-634, 2011.
Y. J. Kim, Y. J. Yoo, K. W. Kim, J. Y. Rhee, Y. H. Kim, and Y. Lee, “Dual broadband metamaterial absorber,” Optics Express, vol. 23, no. 4, pp. 3861-3868, 2015.
M. L. Huang, Y. Z. Cheng, Z. Z. Cheng, H. R. Chen, X. S. Mao, and R. Z. Gong, “Design of a broadband tunable terahertz metamaterial absorber based on complementary structural graphene,” Materials, vol. 11, no. 4, pp. 1-10, 2018.
L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, “Terahertz and infrared spectroscopy of gated large-area graphene,” Nano Letters, vol. 12, no. 7, pp. 3711-3715, 2012.
A. Vakil and N. Engheta, “Transformation optics using graphene,” Science, vol. 332, no. 6035, pp. 1291-1294, 2011.
D. Smith, S. Schultz, P. Markoš, and C. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Physical Review, vol. 65, no. 19, pp. 1-5, 2002.
J. Huang, J. Li, Y. Yang, J. Li, Y. Zhang, and J. Yao, “Active controllable dual broadband terahertz absorber based on hybrid metamaterials with vanadium dioxide,” Optics Express, vol. 28, no. 5, pp. 7018-7027, 2020.
H. Shen, F. Liu, C. Liu, D. Zeng, B. Guo, Z. Wei, F. Wang, C. Tan, X. Huang, and H. Meng, “A polarization-insensitive and wide-angle terahertz absorber with ring-porous patterned graphene metasurface,” Nanomaterials, vol. 10, no. 7, pp. 1-11, 2020,
O. M. Daraei, K. Goudarzi, and M. J. O. Bemani, “A tunable ultra-broadband terahertz absorber based on two layers of graphene ribbons,” Optics & Laser Technology, vol. 122, pp. 105853-105835-9, 2020.
T. Aghaee and A. A. Orouji, “Circuit modeling of ultra-broadband terahertz absorber based on graphene array periodic disks,” International Journal of Numerical Modelling: Electronic Networks, vol. 33, no. 3, pp. 1-13, 2020.
Y. Cheng, H. Zou, J. Yang, X. Mao, and R. Gong, “Dual and broadband terahertz metamaterial absorber based on a compact resonator structure,” Optical Materials Express, vol. 8, no. 10, pp. 3104-3114, 2018.