Miniaturized Wideband Circularly Polarized Triangular Patch Antennas based on Characteristic Mode Analysis
DOI:
https://doi.org/10.13052/2023.ACES.J.381005Keywords:
Antenna miniaturization, characteristic mode analysis, circularly polarized patch antennas, triangular patches, wideband patch antennasAbstract
A miniaturized, wideband circularly polarized (CP) antenna based on coupled triangular patches is presented. Initially, two identical triangular patches with shorting pins are placed close to each other in a perpendicular orientation. Hence, a pair of orthogonal modes can be produced based on the coupled resonators. Under the characteristic mode analysis (CMA), it can be found that the 90∘ phase difference is achieved by modulating gap distance and shorting pins numbers. Both the shape of triangle patches and shorting pins contribute to the miniaturization. To further improve the AR bandwidth, a third patch is added to form a new mode. Thanks to the triple modes produced by the three patch elements, two AR minima are constructed to broaden the AR bandwidth. With this compact arrangement and shorting pins, a miniaturized wideband CP patch antenna with a 5.2% AR bandwidth is successfully implemented. The overall size of the antenna is merely 0.34λ0×0.33λ0×0.046λ0.
Downloads
References
S. Gao, Q. Luo, and F. Zhu, Circularly Polarized Antennas. Hoboken, NJ, USA: Wiley-IEEE Press, Nov. 2013.
K. L. Wong and T. W. Chiou, “Broad-band single-patch circularly polarized microstrip antenna with dual capacitively coupled feeds,” IEEE Trans. Antennas Propagat., vol. 49, no. 1, pp. 41-44, Jan. 2001.
Q.-S. Wu, X. Zhang, and L. Zhu, “A wideband circularly polarized patch antenna with enhanced axial ratio bandwidth via co-design of feeding network,” IEEE Trans. Antennas Propagat., vol. 66, no. 10, pp. 4996-5003, Oct. 2018.
Q. S. Wu, X. Zhang, and L. Zhu, “A feeding technique for wideband CP patch antenna based on 90 degrees phase difference between tapped line and parallel coupled line,” IEEE Trans. Antennas Propagat., vol. 18, no. 7, pp. 1468-1471, July 2019.
Y. J. Hu, W. P. Ding, and W. Q. Cao, “Broadband circularly polarized microstrip antenna array using sequentially rotated technique,” IEEE Antennas Wireless Propagat. Lett., vol. 10, pp. 1358-1361, 2011.
Y. Li, Z. J. Zhang, and Z. H. Feng, “A sequential-phase feed using a circularly polarized shorted loop structure,” IEEE Trans. Antennas Propagat., vol. 61, no. 3, pp. 1443-1447, Mar. 2013.
C. J. Deng, Y. Li, Z. J. Zhang, and Z. H. Feng, “A wideband sequential-phase fed circularly polarized patch array,” IEEE Trans. Antennas Propagat., vol. 62, no. 7, pp. 3890-3893, July 2014.
B. P. Kumar, D. Guha, and C. Kumar, “Reduction of beam squinting and cross-polarized fields in a wideband CP element,” IEEE Antennas Wireless Propagat. Lett., vol. 19, no. 3, pp. 418-422, Mar. 2020.
J. M. Kovitz and Y. Rahmat-Samii, “Using thick substrates and capacitive probe compensation to enhance the bandwidth of traditional CP patch antennas,” IEEE Trans. Antennas Propagat., vol. 62, no. 10, pp. 4970-4979, Oct. 2014.
A. Khidre, K. F. Lee, F. Yang, and A. Z. Elsherbeni, “Circular polarization reconfig urable wideband E-shaped patch antenna for wireless applications,” IEEE Trans. Antennas Propagat., vol. 61, no. 2, pp. 960-964, Feb. 2013.
J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications,” IEEE Trans. Antennas Propagat., vol. 67, no. 7, pp. 4474-4483, July 2019.
K. Y. Lam, K. M. Luk, K. F. Lee, H. Wong, and K. B. Ng, “Small circularly polarized U-slot wideband patch antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 10, pp. 87-90, 2011.
S. S. Yang, K.-F. Lee, A. A. Kishk, and K.-M. Luk, “Design and study of wideband single feed circularly polarized microstrip antennas,” Prog. Electromagn. Res., vol. 80, pp. 45-61, Jan. 2008.
J. Wu, X. Ren, Z. Wang, and Y. Yin, “Broadband circularly polarized antenna with L-shaped strip feeding and shorting-pin loading,” IEEE Antennas Wireless Propagat. Lett., vol. 13, pp. 1733-1736, 2014.
L.-L. Qiu, L. Zhu, and Y. Xu, “Wideband low-profile circularly polarized patch antenna using 90∘
modified Schiffman phase shifter and meandering microstrip feed,” IEEE Trans. Antennas Propagat., vol. 68, no. 7, pp. 5680-5685, July 2020.
Q. W. Lin, H. Wong, X. Y. Zhang, and H. W. Lai, “Printed meandering probe-fed circularly polarized patch antenna with wide bandwidth,” IEEE Antennas Wireless Propagat. Lett., vol. 13, pp. 654-657, 2014.
S.-X. Ta and I. Park, “Low-profile broadband circularly polarized patch antenna using metasurface,” IEEE Trans. Antennas Propagat., vol. 63, no. 12, pp. 5929-5934, Dec. 2015.
M.-C. Tang, X. Chen, M. Li, and R. W. Ziolkowski, “A bandwidth-enhanced, compact, single-feed, low-profile, multilayered, circularly polarized patch antenna,” IEEE Antennas Wireless Propagat. Lett., vol. 16, pp. 2258-2261, 2017.
G. Kumar and K. Gupta, “Broad-band microstrip antennas using additional resonators gap-coupled to the radiating edges,” IEEE Trans. Antennas Propagat., vol. 32, no. 12, pp. 1375-1379, Dec. 1984.
K. Ding, C. Gao, D. Qu, and Q. Yin, “Compact broadband circularly polarized antenna with parasitic patches,” IEEE Trans. Antennas Propagat., vol. 65, no. 9, pp. 4854-4857, Sep. 2017.
J.-F. Lin and Q.-X. Chu, “Enhancing bandwidth of CP microstrip antenna by using parasitic patches in annular sector shapes to control electric field components,” IEEE Antennas Wireless Propagat. Lett., vol. 17, pp. 924-927, 2018.
Q.-S. Wu, X.-Y. Tang, X. Zhang, L. Zhu, G. Zhang, and C.-B. Guo, “Circularly-polarized patch antennas with enhanced bandwidth based on capacitively coupled orthogonal patch radiators,” IEEE Open J. Antennas Propagat., vol. 4, pp. 472-483, 2023.
Y.-H Xu, L. Zhu, N.-W. Liu, and L.-L Qiu, “An inductively coupled CP slot antenna based on intrinsic 90∘
phase difference and its flexible application in wideband CP radiation,” IEEE Trans. Antennas Propagat., vol. 71, no. 2, pp. 1204-1215, Feb. 2023.
N.-W. Liu, L. Zhu, Z.-X. Liu, G. Fu, and Y. Liu, “Design approach of a single circularly polarized patch antenna with enhanced AR-bandwidth under triple-mode resonance,” IEEE Trans. Antennas Propagat., vol. 68, no. 8, pp. 5827-5834, Aug. 2020.
J. Zeng, X. Liang, L. He, F. Guan, F. H. Lin, and J. Zi, “Single-fed triple-mode wideband circularly polarized microstrip antennas using characteristic mode analysis,” IEEE Trans. Antennas Propagat., vol. 70, no. 2, pp. 846-855, Feb. 2022.
R. F. Harrington and J. R. Mautz, “Computation of characteristic modes for conducting bodies,” IEEE Trans. Antennas Propagat., vol. AP-19, no. 5, pp. 629-639, Sep. 1971.
Y. Chen and C.-F. Wang, Characteristic Modes: Theory and Applications in Antenna Engineering, 1st ed., pp. 1-142, Hoboken, NJ, USA: Wiley, 2015.
J.-F. Lin and L. Zhu, “Low-profile high-directivity circularly-polarized differential-fed patch antenna with characteristic modes analysis,” IEEE Trans. Antennas Propagat., vol. 69, no. 2, pp. 723-733, Feb. 2021.
X. Zhang, Q. Y. Zeng, Z. P. Zhong, Q. S. Wu, L. Zhu, and T. Yuan, “Analysis and design of stable-performance circularly polarized antennas based on coupled radiators for smart watches,” IEEE Trans. Antennas Propagat., vol. 70, no. 7, pp. 5312-5323, July 2022.